A283301 Numerators of coefficients at even powers in Taylor series expansion of log(x/sin(x)).
0, 1, 1, 1, 1, 1, 691, 2, 3617, 43867, 174611, 155366, 236364091, 1315862, 3392780147, 6892673020804, 7709321041217, 151628697551, 26315271553053477373, 308420411983322, 261082718496449122051, 3040195287836141605382, 2530297234481911294093
Offset: 0
Examples
log(x/sin(x)) = (1/6)*x^2 + (1/180)*x^4 + (1/2835)*x^6 + (1/37800)*x^8 + (1/467775)*x^10 + (691/3831077250)*x^12 + ...
References
- L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 222, series for log(H(x)/x).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:4 at page 301.
Programs
-
Mathematica
a[0] = 0; a[n_] := Numerator[((-1)^(n + 1) 2^(2 n - 1) BernoulliB[2 n])/(n (2 n)!)]; Table[a[n], {n, 0, 20}] (* or *) Numerator@Table[SeriesCoefficient[Log[x/Sin[x]], {x, 0, 2n}], {n, 0, 20}]
Formula
log(x/sin(x)) = Sum_{n>0} (2^(2*n-1)*(-1)^(n+1)*B(2*n)/(n*(2*n)!) * x^(2*n)). - Ralf Stephan, Apr 01 2015 [corrected by Roland J. Etienne, Apr 19 2016]
Comments