This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283312 #60 Feb 12 2024 07:37:19 %S A283312 1,2,4,3,6,5,10,7,14,8,9,11,22,12,13,26,15,16,17,34,18,19,38,20,21,23, %T A283312 46,24,25,27,28,29,58,30,31,62,32,33,35,36,37,74,39,40,41,82,42,43,86, %U A283312 44,45,47,94,48,49,50,51,52,53,106,54,55,56,57,59,118,60,61,122,63,64,65,66,67,134,68,69 %N A283312 a(n) = smallest missing positive number, unless a(n-1) was a prime in which case a(n) = 2*a(n-1). %C A283312 Comments from _N. J. A. Sloane_, Nov 02 2020: (Start) %C A283312 Alternatively, this is the lexicographically earliest infinite sequence of distinct positive numbers such that every prime is followed by its double. %C A283312 Theorem: This is a permutation of the positive integers. %C A283312 Proof. Sequence is clearly infinite, so for any k there is a number N_0(k) such that n >= N_0(k) implies a(n) > k. %C A283312 Suppose m is missing. Consider a(n) for n = N_0(m). Then a(n) must be a prime p (otherwise it would have been m, which is missing), a(n+1) = 2*p, and a(n+2) = m, a contradiction. QED. %C A283312 (End) %C A283312 A toy model of A280864, A280985, and A127202. %C A283312 Alternative definition: a(1,2) = 1,2. Let P(k) = rad(a(1)*a(2)*...*a(k)), then for n > 2, a(n) = P(n)/P(n-1), where rad is A007947. - _David James Sycamore_, Jan 27 2024 %H A283312 N. J. A. Sloane, <a href="/A283312/b283312.txt">Table of n, a(n) for n = 1..75000</a> %F A283312 There is an explicit formula for the n-th term of the inverse permutation: see A338362. %F A283312 The graph: Numbers appear in the sequence in their natural order, except when interrupted by the appearance of primes. Suppose a(n)=x, where x is neither a prime nor twice a prime. Then if p is a prime in the range x/2 < p < x, 2p appears in the sequence between p and p+1. Therefore we have the identity %F A283312 n = x + pi(x) - pi(x/2). ... (1) %F A283312 If a(n) = x = a prime, then (1) is replaced by %F A283312 n = x + pi(x) - pi(x/2) - 1. ... (2) %F A283312 If a(n) = x = twice a prime then %F A283312 n = x/2 + pi(x/2) - pi(x/4). ... (3) %F A283312 These equations imply that the lower line in the graph of the sequence is %F A283312 x approx= n(1 - 1/(2*log n)) ... (4) %F A283312 while the upper line is %F A283312 x approx= 2n(1 - 1/(2*log n)). ... (5) %F A283312 a(2*n-1 + A369610(n)) = prime(n). - _David James Sycamore_, Jan 27 2024 %e A283312 The offset is 1. What is a(1)? It is the smallest missing positive number, which is 1. Similarly, a(2)=2. %e A283312 What is a(3)? Since the previous term was the prime 2, a(3) = 4. %e A283312 And so on. %p A283312 a:=[1]; %p A283312 H:=Array(1..1000,0); MMM:=1000; %p A283312 H[1]:=1; smn:=2; t:=2; %p A283312 for n from 2 to 100 do %p A283312 if t=smn then a:=[op(a),t]; H[t]:=1; %p A283312 if isprime(t) then a:=[op(a),2*t]; H[2*t]:=1; fi; %p A283312 t:=t+1; %p A283312 # update smallest missing number smn %p A283312 for i from smn+1 to MMM do if H[i]=0 then smn:=i; break; fi; od; %p A283312 else t:=t+1; %p A283312 fi; %p A283312 od: %p A283312 a; %t A283312 Module[{nmax = 100, smn = 1}, Nest[Append[#, If[PrimeQ[Last[#]], 2*Last[#], While[MemberQ[#, ++smn]]; smn]]&, {1}, nmax-1]] (* _Paolo Xausa_, Feb 12 2024 *) %Y A283312 Cf. A127202, A280864, A280985. %Y A283312 See A283313 for smallest missing number, A338362 for inverse, A338361 for indices of primes, A338357 for first differences. %Y A283312 For records see A338356 and A001747. %K A283312 nonn %O A283312 1,2 %A A283312 _N. J. A. Sloane_, Mar 08 2017 %E A283312 Entry revised by _N. J. A. Sloane_, Nov 03 2020