cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283333 Main diagonal of A283272.

This page as a plain text file.
%I A283333 #24 Oct 24 2018 02:33:26
%S A283333 1,-1,-4,-19,-55,5179,408149,23366098,-2659962750,-2946880278857,
%T A283333 -1715161696081878,603927037021100215,9904716216487281046207,
%U A283333 52286804207990141325901614,-71925062774291844591785748425,-17522340813140430159774329947096591
%N A283333 Main diagonal of A283272.
%H A283333 Seiichi Manyama, <a href="/A283333/b283333.txt">Table of n, a(n) for n = 0..80</a>
%F A283333 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(k^n). - _Ilya Gutkovskiy_, Mar 06 2018
%o A283333 (Ruby)
%o A283333 require 'prime'
%o A283333 def power(a, n)
%o A283333   return 1 if n == 0
%o A283333   k = power(a, n >> 1)
%o A283333   k *= k
%o A283333   return k if n & 1 == 0
%o A283333   return k * a
%o A283333 end
%o A283333 def sigma(x, i)
%o A283333   sum = 1
%o A283333   pq = i.prime_division
%o A283333   if x == 0
%o A283333     pq.each{|a, n| sum *= n + 1}
%o A283333   else
%o A283333     pq.each{|a, n| sum *= (power(a, (n + 1) * x) - 1) / (power(a, x) - 1)}
%o A283333   end
%o A283333   sum
%o A283333 end
%o A283333 def A(k, m, n)
%o A283333   ary = [1]
%o A283333   s_ary = [0] + (1..n).map{|i| sigma(k, i * m)}
%o A283333   (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - ary[-j] * s_ary[j]} / i}
%o A283333   ary
%o A283333 end
%o A283333 def A283333(n)
%o A283333   (0..n).map{|i| A(i + 1, 1, i)[-1]}
%o A283333 end
%Y A283333 Cf. A283272.
%K A283333 sign
%O A283333 0,3
%A A283333 _Seiichi Manyama_, Mar 04 2017