This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283333 #24 Oct 24 2018 02:33:26 %S A283333 1,-1,-4,-19,-55,5179,408149,23366098,-2659962750,-2946880278857, %T A283333 -1715161696081878,603927037021100215,9904716216487281046207, %U A283333 52286804207990141325901614,-71925062774291844591785748425,-17522340813140430159774329947096591 %N A283333 Main diagonal of A283272. %H A283333 Seiichi Manyama, <a href="/A283333/b283333.txt">Table of n, a(n) for n = 0..80</a> %F A283333 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(k^n). - _Ilya Gutkovskiy_, Mar 06 2018 %o A283333 (Ruby) %o A283333 require 'prime' %o A283333 def power(a, n) %o A283333 return 1 if n == 0 %o A283333 k = power(a, n >> 1) %o A283333 k *= k %o A283333 return k if n & 1 == 0 %o A283333 return k * a %o A283333 end %o A283333 def sigma(x, i) %o A283333 sum = 1 %o A283333 pq = i.prime_division %o A283333 if x == 0 %o A283333 pq.each{|a, n| sum *= n + 1} %o A283333 else %o A283333 pq.each{|a, n| sum *= (power(a, (n + 1) * x) - 1) / (power(a, x) - 1)} %o A283333 end %o A283333 sum %o A283333 end %o A283333 def A(k, m, n) %o A283333 ary = [1] %o A283333 s_ary = [0] + (1..n).map{|i| sigma(k, i * m)} %o A283333 (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - ary[-j] * s_ary[j]} / i} %o A283333 ary %o A283333 end %o A283333 def A283333(n) %o A283333 (0..n).map{|i| A(i + 1, 1, i)[-1]} %o A283333 end %Y A283333 Cf. A283272. %K A283333 sign %O A283333 0,3 %A A283333 _Seiichi Manyama_, Mar 04 2017