cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283335 Expansion of exp( Sum_{n>=1} -A062796(n)/n*x^n ) in powers of x.

This page as a plain text file.
%I A283335 #24 Mar 12 2017 12:29:16
%S A283335 1,-1,-2,-7,-54,-544,-7005,-108220,-1958263,-40629205,-951376217,
%T A283335 -24826365255,-714568797261,-22491957589783,-768651303338761,
%U A283335 -28344950796904518,-1121910285249842486,-47442295013058570884,-2134673855370621621400
%N A283335 Expansion of exp( Sum_{n>=1} -A062796(n)/n*x^n ) in powers of x.
%H A283335 Seiichi Manyama, <a href="/A283335/b283335.txt">Table of n, a(n) for n = 0..387</a>
%F A283335 G.f.: Product_{k>=1} (1 - x^k)^(k^(k-1)).
%F A283335 a(n) = -(1/n)*Sum_{k=1..n} A062796(k)*a(n-k) for n > 0.
%t A283335 A[n_] :=  Sum[d^d, {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 18}] (* _Indranil Ghosh_, Mar 11 2017 *)
%o A283335 (PARI) a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^d)*a(n - k)));
%o A283335 for(n=0, 18, print1(a(n), ", ")) \\ _Indranil Ghosh_, Mar 11 2017
%Y A283335 Cf. A023879 (exp( Sum_{n>=1} A062796(n)/n*x^n )), A062796.
%K A283335 sign
%O A283335 0,3
%A A283335 _Seiichi Manyama_, Mar 08 2017