cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283337 Expansion of exp( Sum_{n>=1} -sigma_7(n)*x^n/n ) in powers of x.

This page as a plain text file.
%I A283337 #13 Mar 08 2017 06:57:42
%S A283337 1,-1,-64,-665,-1351,33111,408149,1959491,-4502590,-149420286,
%T A283337 -1182474566,-3678670450,22384197409,377982157035,2474860645111,
%U A283337 6161653683590,-48899064011245,-695916857379611,-4275491639488601,-10750056317745704,69316545348329853
%N A283337 Expansion of exp( Sum_{n>=1} -sigma_7(n)*x^n/n ) in powers of x.
%H A283337 Seiichi Manyama, <a href="/A283337/b283337.txt">Table of n, a(n) for n = 0..1000</a>
%F A283337 G.f.: Product_{n>=1} (1 - x^n)^(n^6).
%F A283337 a(n) = -(1/n)*Sum_{k=1..n} sigma_7(k)*a(n-k).
%Y A283337 Column k=6 of A283272.
%Y A283337 Cf. A023875 (exp( Sum_{n>=1} sigma_7(n)*x^n/n )).
%Y A283337 Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), A283336 (k=6), this sequence (k=7), A283338 (k=8), A283339 (k=9), A283340 (k=10).
%K A283337 sign
%O A283337 0,3
%A A283337 _Seiichi Manyama_, Mar 05 2017