cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283352 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 619", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 10, 100, 1110, 11100, 111110, 1111100, 11111110, 111111100, 1111111110, 11111111100, 111111111110, 1111111111100, 11111111111110, 111111111111100, 1111111111111110, 11111111111111100, 111111111111111110, 1111111111111111100, 11111111111111111110
Offset: 0

Views

Author

Robert Price, Mar 05 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 619; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Mar 06 2017: (Start)
G.f.: (1 - x^2 + 110*x^3) / ((1 - x)*(1 + x)*(1 - 10*x)).
a(n) = 10*(10^n - 10) / 9 for n>0 and even.
a(n) = 10*(10^n - 1) / 9 for n odd.
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n>3.
(End)