A283365 Minimal number of numbers in A000332 = { C(k,4); k=1,2,3,... } whose sum equals n.
0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3
Offset: 0
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 0..10000
- Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75. DOI:10.1090/S0002-9939-02-06710-2.
Crossrefs
Programs
-
PARI
{a(n,k=4,M=9e9,N=n) = (n <= k || M <= k+1) && return(n); for(m=k,M,binomial(m,k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M,k),c=binomial(M-1,k),NN); forstep( nn=n\b,0,-1, if(N>NN=nn+g(n-nn*b,k,M,N,d),N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N}
Formula
a(n) <= 8 = a(64) for all n, according to Kim (2003, first row of table "d = 4", p. 74), but this "numerical result" has no "* denoting exact values" (see Remark at end of paper), so it could be incorrect. [Disclaimer added by M. F. Hasler, Sep 22 2022]
Comments