This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283367 #14 Mar 08 2025 17:17:36 %S A283367 1,2,2,3,3,4,3,5,4,5,6,4,5,7,5,6,8,5,7,9,6,7,8,10,6,7,8,11,7,9,10,12, %T A283367 7,9,10,13,8,9,11,14,8,10,11,12,15,9,11,12,13,16,9,11,12,13,17,10,12, %U A283367 13,15,18,10,12,13,15,19,11,13,15,16,20,11,14,15,16,17,21 %N A283367 Irregular triangle read by rows: T(n,k) = number of horizontal positions for the vertical legs of the Dyck paths for the symmetric representation of sigma(n) that are listed in the corresponding positions of the triangle of A259177. %C A283367 The dot product of the n-th row of this triangle and the n-th row of triangle A259177 equals A024916(n), the sum of all divisors of numbers 1 through n (true for all n <= 20000); the value of a(n) is the sum of the rectangles between the y-axis and the vertical legs of the symmetric representation of sigma(n). This is the companion computation to A283368. %F A283367 T(n,k) = Sum_{i=1..k} f(n, 2*i-1) where f is defined in A237593. %F A283367 A024916(n) = Sum_{i=1..row(n)} T(n,i)*S(n,i) where S(n,i) refers to the triangle of A259177 and row(n) = floor((sqrt(8*n+1)-1)/2). %e A283367 The first vertical leg of the symmetric representation of sigma(15) is at x-coordinate 8 and has length 3, and row 15 has 5 entries so that T(15,1) = 8 and T(15,5) = 15. %e A283367 The first 16 rows of the irregular triangle: %e A283367 1: 1 %e A283367 2: 2 %e A283367 3: 2 3 %e A283367 4: 3 4 %e A283367 5: 3 5 %e A283367 6: 4 5 6 %e A283367 7: 4 5 7 %e A283367 8: 5 6 8 %e A283367 9: 5 7 9 %e A283367 10: 6 7 8 10 %e A283367 11: 6 7 8 11 %e A283367 12: 7 9 10 12 %e A283367 13: 7 9 10 13 %e A283367 14: 8 9 11 14 %e A283367 15: 8 10 11 12 15 %e A283367 16: 9 11 12 13 16 %t A283367 (* function f[n,k] and its support functions are defined in A237593 *) %t A283367 a283367[n_, k_] := Sum[f[n, 2*i-1], {i, k}] %t A283367 TableForm[Table[a283367[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *) %t A283367 Flatten[Table[a283367[n, k], {n, 1, 21}, {k, 1, row[n]}]] (* sequence data *) %Y A283367 Cf. A024916, A237593, A259176, A259177, A283368. %K A283367 nonn,tabf %O A283367 1,2 %A A283367 _Hartmut F. W. Hoft_, Mar 06 2017