cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283368 Irregular triangle read by rows: T(n,k) = number of heights for the horizontal elements of the Dyck paths for the symmetric representation of sigma(n) that are listed in the corresponding positions of the triangle of A259176.

This page as a plain text file.
%I A283368 #12 Mar 08 2025 18:38:51
%S A283368 1,2,3,2,4,3,5,3,6,5,4,7,5,4,8,6,5,9,7,5,10,8,7,6,11,8,7,6,12,10,9,7,
%T A283368 13,10,9,7,14,11,9,8,15,12,11,10,8,16,13,12,11,9,17,13,12,11,9,18,15,
%U A283368 13,12,10,19,15,13,12,10,20,16,15,13,11,21,17,16,15,14,11
%N A283368 Irregular triangle read by rows: T(n,k) = number of heights for the horizontal elements of the Dyck paths for the symmetric representation of sigma(n) that are listed in the corresponding positions of the triangle of A259176.
%C A283368 The dot product of the n-th row of this triangle and the n-th row of triangle A259176 equals A024916(n), the sum of all divisors of numbers 1 through n (true for all n <= 20000); the value is the sum of the rectangles between the x-axis and the horizontal legs of the symmetric representation of sigma(n). This is the companion computation to A283367.
%F A283368 T(n,k) = n - Sum_{i=1..k-1} f(n, 2*i) where f is defined in A237593.
%F A283368 A024916(n) = Sum_{i=1..row(n)} T(n,i)*S(n,i) where S(n,i) refers to the triangle of A259176 and row(n) = floor((sqrt(8*n+1)-1)/2).
%e A283368 The first horizontal leg of the symmetric representation of sigma(15) is at y-coordinate 15 and has length 8, and row 15 has 5 entries so that T(15,1) = 15 and T(15,5) = 8.
%e A283368 The first 16 rows of the irregular triangle:
%e A283368    1
%e A283368    2
%e A283368    3    2
%e A283368    4    3
%e A283368    5    3
%e A283368    6    5    4
%e A283368    7    5    4
%e A283368    8    6    5
%e A283368    9    7    5
%e A283368   10    8    7    6
%e A283368   11    8    7    6
%e A283368   12   10    9    7
%e A283368   13   10    9    7
%e A283368   14   11    9    8
%e A283368   15   12   11   10    8
%e A283368   16   13   12   11    9
%t A283368 (* function f[n,k] and its support functions are defined in A237593 *)
%t A283368 a283368[n_, k_] := n - Sum[f[n, 2i], {i, k-1}]
%t A283368 TableForm[Table[a283368[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
%t A283368 Flatten[Table[a283368[n, k], {n, 1, 21}, {k, 1, row[n]}]] (* sequence data *)
%Y A283368 Cf. A024916, A237593, A259176, A259177, A283367.
%K A283368 nonn,tabf
%O A283368 1,2
%A A283368 _Hartmut F. W. Hoft_, Mar 06 2017