This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283368 #12 Mar 08 2025 18:38:51 %S A283368 1,2,3,2,4,3,5,3,6,5,4,7,5,4,8,6,5,9,7,5,10,8,7,6,11,8,7,6,12,10,9,7, %T A283368 13,10,9,7,14,11,9,8,15,12,11,10,8,16,13,12,11,9,17,13,12,11,9,18,15, %U A283368 13,12,10,19,15,13,12,10,20,16,15,13,11,21,17,16,15,14,11 %N A283368 Irregular triangle read by rows: T(n,k) = number of heights for the horizontal elements of the Dyck paths for the symmetric representation of sigma(n) that are listed in the corresponding positions of the triangle of A259176. %C A283368 The dot product of the n-th row of this triangle and the n-th row of triangle A259176 equals A024916(n), the sum of all divisors of numbers 1 through n (true for all n <= 20000); the value is the sum of the rectangles between the x-axis and the horizontal legs of the symmetric representation of sigma(n). This is the companion computation to A283367. %F A283368 T(n,k) = n - Sum_{i=1..k-1} f(n, 2*i) where f is defined in A237593. %F A283368 A024916(n) = Sum_{i=1..row(n)} T(n,i)*S(n,i) where S(n,i) refers to the triangle of A259176 and row(n) = floor((sqrt(8*n+1)-1)/2). %e A283368 The first horizontal leg of the symmetric representation of sigma(15) is at y-coordinate 15 and has length 8, and row 15 has 5 entries so that T(15,1) = 15 and T(15,5) = 8. %e A283368 The first 16 rows of the irregular triangle: %e A283368 1 %e A283368 2 %e A283368 3 2 %e A283368 4 3 %e A283368 5 3 %e A283368 6 5 4 %e A283368 7 5 4 %e A283368 8 6 5 %e A283368 9 7 5 %e A283368 10 8 7 6 %e A283368 11 8 7 6 %e A283368 12 10 9 7 %e A283368 13 10 9 7 %e A283368 14 11 9 8 %e A283368 15 12 11 10 8 %e A283368 16 13 12 11 9 %t A283368 (* function f[n,k] and its support functions are defined in A237593 *) %t A283368 a283368[n_, k_] := n - Sum[f[n, 2i], {i, k-1}] %t A283368 TableForm[Table[a283368[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *) %t A283368 Flatten[Table[a283368[n, k], {n, 1, 21}, {k, 1, row[n]}]] (* sequence data *) %Y A283368 Cf. A024916, A237593, A259176, A259177, A283367. %K A283368 nonn,tabf %O A283368 1,2 %A A283368 _Hartmut F. W. Hoft_, Mar 06 2017