A283370 Minimal number of terms required to write n as sum of numbers in A000389 = { C(k,5); k=1,2,3,... } (with repetitions allowed).
0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6
Offset: 0
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 0..10000
- Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75. DOI:10.1090/S0002-9939-02-06710-2.
Crossrefs
Programs
-
PARI
{a(n,k=5,M=9e9,N=n) = n>k || return(n); for(m=k,M,binomial(m,k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M,k),c=binomial(M-1,k),NN); forstep( nn=n\b,0,-1, if(N>NN=nn+a(n-nn*b,k,M,N),N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N}
Formula
a(n) <= 10 = a(220) for all n, according to Kim (2003, p. 74, first row of table "d = 5"), but this "numerical result" has no "* denoting exact values" (see Remark at end of paper), so it could be incorrect. [Disclaimer added by M. F. Hasler, Sep 22 2022]
Comments