This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283393 #34 Dec 12 2023 07:46:56 %S A283393 1,10,1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10,1, %T A283393 10,1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10,1,10, %U A283393 1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10,1,10,1,2,5,2,5,2,1,10 %N A283393 a(n) = gcd(n^2-1, n^2+9). %C A283393 Periodic with period 10. %C A283393 Similar sequences with formula gcd(n^2-1, n^2+k): %C A283393 k= 1: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... (A000034) %C A283393 k= 3: 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, ... (A010685) %C A283393 k= 5: 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, ... (A129203, start 6) %C A283393 k= 7: 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, ... (A010689) %C A283393 k= 9: 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, ... (this sequence) %C A283393 k=11: 1, 12, 3, 4, 3, 12, 1, 12, 3, 4, 3, 12, 1, ... (A129197, start 12) %C A283393 Connection between the values of a(n) and the last digit of n: %C A283393 . if n ends with 0, 2 or 8, then a(n) = 1; %C A283393 . if n ends with 1 or 9, then a(n) = 10; %C A283393 . if n ends with 3, 5 or 7, then a(n) = 2; %C A283393 . if n ends with 4 or 6, then a(n) = 5. %C A283393 Also, continued fraction expansion of (57 + sqrt(4579))/114. %H A283393 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1). %F A283393 G.f.: (1 + 10*x + x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 5*x^6 + 2*x^7 + x^8 + 10*x^9)/(1 - x^10). %t A283393 Table[PolynomialGCD[n^2 - 1, n^2 + 9], {n, 0, 100}] %t A283393 LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 10, 1, 2, 5, 2, 5, 2, 1, 10}, 100] %o A283393 (Python) [1, 10, 1, 2, 5, 2, 5, 2, 1, 10]*10 %o A283393 (Sage) [gcd(n^2-1, n^2+9) for n in range(100)] %o A283393 (Magma) &cat [[1, 10, 1, 2, 5, 2, 5, 2, 1, 10]^^10]; %o A283393 (Maxima) makelist(gcd(n^2-1, n^2+9), n, 0, 100); %o A283393 (PARI) Vec((1 + 10*x + x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 5*x^6 + 2*x^7 + x^8 + 10*x^9)/(1 - x^10) + O(x^100)) \\ _Colin Barker_, Mar 08 2017 %Y A283393 Cf. A000034, A010685, A010689, A129197, A129203. %K A283393 nonn,easy %O A283393 0,2 %A A283393 _Bruno Berselli_, Mar 07 2017