A283423 Prime power pseudoperfect numbers: numbers m > 1 such that 1/m + Sum 1/p^k = 1, where the sum is over the prime powers p^k | m.
2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 64, 100, 128, 162, 256, 272, 294, 342, 486, 500, 512, 1024, 1458, 1806, 2048, 2058, 2500, 4096, 4374, 4624, 6498, 8192, 10100, 12500, 13122, 14406, 16384, 23994, 26406, 32768, 34362, 39366, 47058
Offset: 1
Keywords
Examples
m = 18 is in the sequence because 1/18 + 1/2 + 1/3 + 1/9 = 1. m = 12 is NOT in the sequence because 1/12 + 1/2 + 1/4 + 1/3 != 1.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..131 (terms < 10^11, first 101 terms from Amiram Eldar)
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
Programs
-
Mathematica
ok[n_] := Total[n/Flatten@ Table[e[[1]] ^ Range[e[[2]]], {e, FactorInteger[n]}]] + 1 == n; Select[ Range[10^5], ok] (* Giovanni Resta, May 27 2017 *)
Comments