This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283425 #37 Aug 30 2022 20:39:48 %S A283425 1,61,127,113,199,191,701,233,457,241,3701,557,3673,421,499,947,2437, %T A283425 4349,8513,4951,3229,937,4813,881,6863,1499,2803,12497,2029,88493, %U A283425 5857,10853,28627,9551,43691,85049,15973,75209,4933,5009,22613,14731,74489,16993,90887,307,3581,15083,12893,71317,3583,1907 %N A283425 Difference between A002110(n) and the largest semiprime b*c < A002110(n) where b is prime(n+1). %C A283425 Only these 6 values are not prime numbers up to n=499: 1, 590221, 2807627, 5862793, 39109337, 13116283. %C A283425 All a(n) are totatives of A002110(n); thus if a(n) < b^2 in the semiprime b*c then a(n) is prime, otherwise a(n) is either prime or semiprime. %C A283425 The number c is prevprime(p_n# / p_(n+1)), where p_n# = A002110(n). Thus semiprime b*c = A000040(n+1)*prevprime(A002110(n) / A000040(n+1)), and a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)). - _Michael De Vlieger_, May 15 2017 %F A283425 a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)) for n >= 4. - _Michael De Vlieger_, May 15 2017 %e A283425 Sequence starts at n=4. %e A283425 For n=5, a(n)=61. %e A283425 Pn(5): a=2310, b=13, c=173, d=61. %e A283425 I.e., d = a - (b*c) = 2310 - (13*173) = 2310 - 2249 = 61. %e A283425 Pn(4): a=210, b=11, c=19, d=1, %e A283425 Pn(5): a=2310, b=13, c=173, d=61, %e A283425 Pn(6): a=30030, b=17, c=1759, d=127, %e A283425 Pn(7): a=510510, b=19, c=26863, d=113, %e A283425 Pn(8): a=9699690, b=23, c=421717, d=199, %e A283425 Pn(9): a=223092870, b=29, c=7692851, d=191. %e A283425 a(n) = a - (b*c) where a(n) has a high probability of being prime, and b*c is the largest semiprime below A002110(n) where b is prime (n+1). %t A283425 Table[Function[{P, q}, P - NextPrime[P/q, -1] q] @@ {Product[Prime@ i, {i, n}], Prime[n + 1]}, {n, 4, 55}] (* _Michael De Vlieger_, May 15 2017 *) %Y A283425 Cf. A000040, A001358, A002110, A285784, A285905. %K A283425 nonn %O A283425 4,2 %A A283425 _Jamie Morken_, May 14 2017