cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283431 a(n) is the number of zeros of the Hermite H(n, x) polynomial in the open interval (-1, +1).

This page as a plain text file.
%I A283431 #26 Feb 16 2025 08:33:42
%S A283431 0,1,2,1,2,3,2,3,2,3,2,3,4,3,4,3,4,3,4,3,4,5,4,5,4,5,4,5,4,5,4,5,6,5,
%T A283431 6,5,6,5,6,5,6,5,6,5,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,8,7,8,7,8,7,
%U A283431 8,7,8,7,8,7,8,7,8,7,8,9,8,9
%N A283431 a(n) is the number of zeros of the Hermite H(n, x) polynomial in the open interval (-1, +1).
%C A283431 The Hermite polynomials satisfy the following recurrence relation:
%C A283431 H(0,x) = 1,
%C A283431 H(1,x) = 2*x,
%C A283431 H(n,x) = 2*x*H(n-1,x) - 2*(n-1)*H(n-2,x).
%C A283431 The first few Hermite polynomials are:
%C A283431 H(0,x) = 1
%C A283431 H(1,x) = 2x
%C A283431 H(2,x) = 4x^2 - 2
%C A283431 H(3,x) = 8x^3 - 12x
%C A283431 H(4,x) = 16x^4 - 48x^2 + 12
%C A283431 H(5,x) = 32x^5 - 160x^3 + 120x
%H A283431 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial.</a>
%H A283431 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>
%F A283431 Conjecture: a(n) = A257564(n+2).
%e A283431 a(5) = 3 because the zeros of H(5,x) = 32x^5 - 160x^3 + 120x are x1 = -2.0201828..., x2 = -.9585724..., x3 = 0., x4 = .9585724... and x5 = 2.020182... with three roots x2, x3 and x4 in the open interval (-1, +1).
%p A283431 for n from 0 to 90 do:it:=0:
%p A283431 y:=[fsolve(expand(HermiteH(n,x)),x,real)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
%t A283431 a[n_] := Length@ List@ ToRules@ Reduce[ HermiteH[n, x] == 0 && -1 < x < 1, x]; Array[a, 82, 0] (* _Giovanni Resta_, May 17 2017 *)
%Y A283431 Cf. A054373, A054374, A059343, A008611, A096713, A257564, A285872.
%K A283431 nonn
%O A283431 0,3
%A A283431 _Michel Lagneau_, May 16 2017