This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283432 #40 May 20 2023 13:39:37 %S A283432 1,1,3,1,6,27,1,18,216,5346,1,45,1701,134865,10766601,1,135,15066, %T A283432 3608550,871858485,211829725395,1,378,133407,96997824,70607782701, %U A283432 51472887053238,37523659114815147,1,1134,1198476,2616461190,5719211266905,12507889858389450,27354747358715650524,59824832319304600777362 %N A283432 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 3 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. %C A283432 Computed using Burnside's orbit-counting lemma. %H A283432 María Merino, <a href="/A283432/b283432.txt">Rows n=0..46 of triangle, flattened</a> %H A283432 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A283432 For even n and m: T(n,m) = (3^(m*n) + 3*3^(m*n/2))/4; %F A283432 for even n and odd m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 2*3^(m*n/2))/4; %F A283432 for odd n and even m: T(n,m) = (3^(m*n) + 3^((m*n+m)/2) + 2*3^(m*n/2))/4; %F A283432 for odd n and m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 3^((m*n+m)/2) + 3^((m*n+1)/2))/4. %e A283432 Triangle begins: %e A283432 =========================================================== %e A283432 n\ m | 0 1 2 3 4 5 %e A283432 -----|----------------------------------------------------- %e A283432 0 | 1 %e A283432 1 | 1 3 %e A283432 2 | 1 6 27 %e A283432 3 | 1 18 216 5346 %e A283432 4 | 1 45 1701 134865 10766601 %e A283432 5 | 1 135 15066 3608550 871858485 211829725395 %e A283432 ... %t A283432 Table[Which[AllTrue[{n,m},EvenQ],(3^(m n)+3 3^((m n)/2))/4,EvenQ[ n]&&OddQ[m],(3^(m n)+3^((m n+n)/2)+2 3^((m n)/2))/4,OddQ[n]&&EvenQ[ m],(3^(m n)+3^((m n+m)/2)+2 3^((m n)/2))/4,True,(3^(m n)+3^((m n+n)/2)+3^((m n+m)/2)+3^((m n+1)/2))/4],{n,0,10},{m,0,n}]//Flatten (* _Harvey P. Dale_, Mar 29 2023 *) %Y A283432 Cf. A225910. %K A283432 nonn,tabl %O A283432 0,3 %A A283432 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 15 2017