A283433 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 4 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 4, 1, 10, 76, 1, 40, 1120, 67840, 1, 136, 16576, 4212736, 1073790976, 1, 544, 263680, 268779520, 274882625536, 281475530358784, 1, 2080, 4197376, 17184194560, 70368756760576, 288230393868451840, 1180591620768950910976
Offset: 0
Examples
Triangle begins: ======================================================================= n\m | 0 1 2 3 4 5 ----|------------------------------------------------------------------ 0 | 1 1 | 1 4 2 | 1 10 76 3 | 1 40 1120 67840 4 | 1 136 16576 4212736 1073790976 5 | 1 544 263680 268779520 274882625536 281475530358784 ...
Links
- María Merino, Rows n=0..41 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (4^(m*n) + 3*4^(m*n/2))/4;
for even n and odd m: T(n,m) = (4^(m*n) + 4^((m*n+n)/2) + 2*4^(m*n/2))/4;
for odd n and even m: T(n,m) = (4^(m*n) + 4^((m*n+m)/2) + 2*4^(m*n/2))/4;
for odd n and m: T(n,m) = (4^(m*n) + 4^((m*n+n)/2) + 4^((m*n+m)/2) + 4^((m*n+1)/2))/4.
Comments