This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283434 #30 Apr 29 2019 05:21:41 %S A283434 1,1,5,1,15,175,1,75,4125,496875,1,325,98125,61140625,38147265625,1, %T A283434 1625,2446875,7632421875,23841923828125,74505821533203125,1,7875, %U A283434 61046875,953736328125,14901161376953125,232830644622802734375,3637978807094573974609375 %N A283434 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 5 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. %C A283434 Computed using Burnside's orbit-counting lemma. %H A283434 María Merino, <a href="/A283434/b283434.txt">Rows n=0..38 of triangle, flattened</a> %H A283434 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A283434 For even n and m: T(n,m) = (5^(m*n) + 3*5^(m*n/2))/4; %F A283434 for even n and odd m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 2*5^(m*n/2))/4; %F A283434 for odd n and even m: T(n,m) = (5^(m*n) + 5^((m*n+m)/2) + 2*5^(m*n/2))/4; %F A283434 for odd n and m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 5^((m*n+m)/2) + 5^((m*n+1)/2))/4. %e A283434 Triangle begins: %e A283434 ============================================================================ %e A283434 n\m | 0 1 2 3 4 5 %e A283434 ----|----------------------------------------------------------------------- %e A283434 0 | 1 %e A283434 1 | 1 5 %e A283434 2 | 1 15 175 %e A283434 3 | 1 75 4125 496875 %e A283434 4 | 1 325 98125 61140625 38147265625 %e A283434 5 | 1 1625 2446875 7632421875 23841923828125 74505821533203125 %e A283434 ... %Y A283434 Cf. A225910, A283432, A283433. %K A283434 nonn,tabl %O A283434 0,3 %A A283434 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 15 2017