This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283435 #50 Jun 11 2024 09:39:45 %S A283435 1,1,1,1,1,3,1,2,6,39,1,4,22,252,3270,1,6,66,1675,46448,1302196,1,10, %T A283435 246,12300,676732,38786376,2268820290,1,19,868,88900,10032648, %U A283435 1134474924,134564842984,15801337532526 %N A283435 Triangle read by rows: T(n,m) is the number of binary pattern classes in the (n,m)-rectangular grid with half 1's and half 0's: two patterns are in same class if one can be obtained by a reflection or 180-degree rotation of the other (ordered occurrences rounded up/down if m*n is odd). %C A283435 Computed using Polya's enumeration theorem for colorings. %H A283435 María Merino, <a href="/A283435/b283435.txt">Rows n=0..59 of triangle, flattened</a> %H A283435 María Merino and Imanol Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A283435 G.f.: g(x1,x2)=(y1^(m*n) + 3*y2^(m*n/2))/4 for even n and m; %F A283435 (y1^(m*n) + y1^n*y2^((m*n-m)/2) + 2*y2^(m*n/2))/4 for odd n and even m; %F A283435 (y1^(m*n) + y1^m*y2^((m*n-n)/2) + 2*y2^(m*n/2))/4 for even n and odd m; %F A283435 (y1^(m*n) + y1^n*y2^((m*n-n)/2) + y1^m*y2^((m*n-m)/2) + y1*y2^((m*n-1)/2))/4 for odd n and m; where coefficient correspond to y1=x1+x2, y2=x1^2+x2^2 and occurrences of numbers are ceiling(m*n/2) for 0's and floor(m*n/2) for 1's. %e A283435 For n = 3 and m = 2 the T(3,2) = 6 solutions are colorings of 3 X 2 matrices in 2 colors inequivalent under the action of the Klein group with exactly 3 occurrences of each color (coefficient of x1^3 x2^3). %e A283435 Triangle begins: %e A283435 ====================================== %e A283435 n\m | 0 1 2 3 4 5 %e A283435 ----|--------------------------------- %e A283435 0 | 1 %e A283435 1 | 1 1 %e A283435 2 | 1 1 3 %e A283435 3 | 1 2 6 39 %e A283435 4 | 1 4 22 252 3270 %e A283435 5 | 1 6 66 1675 46448 1302196 %Y A283435 Cf. A286892, A287020, A287021, A287022, A287377, A287378, A287383, A287384. %K A283435 nonn,tabl %O A283435 0,6 %A A283435 _María Merino_ and Imanol Unanue, May 15 2017