This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283438 #24 Mar 13 2017 04:21:47 %S A283438 1,2,6,14,36 %N A283438 The largest possible size of a set in F_3^n, free of three-term arithmetic progressions with the difference in {0,1}^n. %C A283438 102 <= a(5) <= 108. - _Robert Israel_, Mar 10 2017 %H A283438 Robert Israel, <a href="/A283438/a283438_1.txt">Set of size 36 for n=4</a> %H A283438 Robert Israel, <a href="/A283438/a283438_2.txt">Set of size 102 for n=5</a> %e A283438 a(0) = 1: {()}. %e A283438 a(1) = 2: {(0), (1)}. %e A283438 a(2) = 6: {(0,0), (0,2), (1,1), (1,2), (2,0), (2,1)}. %e A283438 a(3) = 14: {(0,0,0), (0,0,2), (0,2,0), (0,2,2), (1,0,1), (1,0,2), (1,1,0), (1,1,1), (1,2,0), (1,2,2), (2,0,0), (2,0,1), (2,1,0), (2,1,1)}. %o A283438 (PARI) \\ This code is for demonstration only, it is far too slow for computation! %o A283438 ok(v)=vecmax(lift(v))<2 %o A283438 has(v)=my(t); for(i=1,#v, for(j=1,#v, if(i==j,next); for(k=1,#v, if(i==k||j==k,next); t=v[i]-v[j]; if(v[j]-v[k]==t && ok(t), return(0))))); 1 %o A283438 a(n)=my(N=3^n,v=vector(N,i,digits(N+i-1,3)[2..n+1]),u,r,t);for(i=0,2^N-1, u=Mod(vecextract(v,i),3); if(has(u), t=hammingweight(i); if(t>r, r=t))); r \\ _Charles R Greathouse IV_, Mar 07 2017 %K A283438 nonn,more,hard %O A283438 0,2 %A A283438 _Vsevolod F. Lev_, Mar 07 2017 %E A283438 a(4) from _Robert Israel_, Mar 07 2017