This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283450 #14 Oct 11 2017 05:06:43 %S A283450 2,2,3,2,19,2,5,17,13,7,1129,59,47,7,19,7,31,79,11,37,199,5,907,43,5, %T A283450 43,3,13,919,2,13,2,263,127,241,3,131,71,11,421,223,2,31,3,7,89,3673, %U A283450 61,293,5,131,919,3,3,349,457,1091,461,67,7,331,7177,571,43,1621,109,2521,3,1061,5,967,1093,1423 %N A283450 Least prime p such that n*(p^n-1)+1 is prime. %C A283450 a(n) is the least prime p such that p^n is in A280257. %C A283450 The generalized Dickson conjecture would imply that a(n) exists for all n. %C A283450 a(n) = 2 for n in A046847. %H A283450 Robert Israel, <a href="/A283450/b283450.txt">Table of n, a(n) for n = 1..600</a> %e A283450 For n=5, 5*(19^5-1)+1 = 12380491 is prime, but 5*(p^5-1)+1 is not prime for primes p < 19, so a(5)=19. %p A283450 f:= proc(n) local p; %p A283450 p:= 2: %p A283450 while not isprime(n*(p^n-1)+1) do p:= nextprime(p) od; %p A283450 p %p A283450 end proc: %p A283450 map(f, [$1..100]); %t A283450 Table[p=2; While[!PrimeQ[n (p^n-1)+1], p=NextPrime@p]; p, {n, 100}] (* _Vincenzo Librandi_, Oct 11 2017 *) %o A283450 (PARI) a(n)=forprime(p=2,, if(ispseudoprime(n*(p^n-1)+1), return(p))) \\ _Charles R Greathouse IV_, Mar 07 2017 %Y A283450 Cf. A046847, A280257. %K A283450 nonn %O A283450 1,1 %A A283450 _Robert Israel_, Mar 07 2017