This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283463 #12 Mar 09 2017 11:35:23 %S A283463 1,1,1,2,1,3,1,5,3,4,1,7,1,11,5,6,1,13,1,17,7,10,1,19,5,9,11,8,1,23,1, %T A283463 29,13,14,7,15,1,31,17,22,1,37,1,41,19,12,1,43,7,25,9,26,1,47,11,21, %U A283463 23,34,1,53,1,59,29,20,13,33,1,61,15,38,1,67,1,71,31,18,11,35,1,73,37,16,1,79,17,39,41,46,1,83,13,55,43,58,19,51 %N A283463 a(n) = A032742(A266645(n)). %H A283463 Antti Karttunen, <a href="/A283463/b283463.txt">Table of n, a(n) for n = 1..10001</a> %F A283463 a(n) = A032742(A266645(n)). %F A283463 a(n) = A266645(n) / A020639(n). [Because A266645 preserves the smallest prime factor of n.] %t A283463 f[n_] := Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Function[{m, n}, If[# == 1, 1, Divisors[#][[-2]]] &@ f[Lookup[s, g[n] + 1][[m]] - Boole[n == 1]]][#1, First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* _Michael De Vlieger_, Mar 09 2017, Version 10 *) %o A283463 (Scheme) (define (A283463 n) (A032742 (A266645 n))) %Y A283463 Cf. A020639, A032742, A266645, A280497, A280498, A283464, A283465. %K A283463 nonn %O A283463 1,4 %A A283463 _Antti Karttunen_, Mar 08 2017