cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283495 Smallest k such that there is a number whose divisors sum to k*n.

This page as a plain text file.
%I A283495 #11 Mar 10 2017 06:58:59
%S A283495 1,2,1,1,3,1,1,1,2,2,4,1,1,2,1,2,4,1,2,1,2,2,6,1,6,3,2,1,6,2,1,1,4,2,
%T A283495 4,1,2,1,1,1,4,1,6,1,2,3,6,1,2,3,2,2,4,1,2,1,1,3,6,1,3,2,1,2,3,2,6,1,
%U A283495 2,2,4,1,7,1,2,2,4,1,2,1,2,2,4,1,3,3,2,2,23,1,1,4,1,3,6,1
%N A283495 Smallest k such that there is a number whose divisors sum to k*n.
%C A283495 Smallest k >=1 such that (number of numbers whose divisor sum to k*n) = m:
%C A283495 m \n|  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  | 10 | 11 | 12 |
%C A283495 ---------------------------------------------------------------------------
%C A283495 0   |  2  |  1  |  3  |  4  |  1  | 11  |  3  |  2  |  1  |  1 |  1 | 23 |
%C A283495 1   |  1  |  2  |  1  |  1  |  3  |  1  |  1  |  1  |  2  |  2 |  4 |  3 |
%C A283495 2   | 12  |  6  |  4  |  3  | 16  |  2  |  8  |  4  |  2  |  8 | 12 |  1 |
%C A283495 3   | 24  | 12  |  8  |  6  | 12  |  4  |  6  |  3  | 10  |  6 | ...|    |
%C A283495 ...
%e A283495 a(2) = 2 because (number of numbers whose divisor sum to 2*2) = 1.
%o A283495 (PARI) a(n)=my(k=oo,m,t); while(m<k, t=sigma(m++)/n; if(denominator(t)==1 && t<k, k=t)); k \\ _Charles R Greathouse IV_, Mar 09 2017
%Y A283495 Cf. A000203, A054973, A283486, A070982.
%Y A283495 Cf. A007369 (numbers n such that a(n) > 1).
%K A283495 nonn
%O A283495 1,2
%A A283495 _Juri-Stepan Gerasimov_, Mar 08 2017
%E A283495 Corrected by _Charles R Greathouse IV_, Mar 09 2017