This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283498 #25 Jun 19 2022 13:45:06 %S A283498 1,9,82,1033,15626,280026,5764802,134218761,3486784483,100000015634, %T A283498 3138428376722,106993205660122,3937376385699290,155568095563577034, %U A283498 6568408355712906332,295147905179487044617,14063084452067724991010,708235345355341163422059,37589973457545958193355602 %N A283498 a(n) = Sum_{d|n} d^(d+1). %H A283498 Seiichi Manyama, <a href="/A283498/b283498.txt">Table of n, a(n) for n = 1..385</a> %F A283498 From _Ilya Gutkovskiy_, May 06 2017: (Start) %F A283498 G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - x^k). %F A283498 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n. (End) %e A283498 a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026. %t A283498 f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* _Robert G. Wilson v_, Mar 10 2017 *) %o A283498 (PARI) a(n) = sumdiv(n, d, d^(d+1)); \\ _Michel Marcus_, Mar 09 2017 %o A283498 (Python) %o A283498 from sympy import divisors %o A283498 def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jun 19 2022 %Y A283498 Cf. A007778, A062796 (Sum_{d|n} d^d). %K A283498 nonn %O A283498 1,2 %A A283498 _Seiichi Manyama_, Mar 09 2017 %E A283498 More terms from _Michel Marcus_, Mar 09 2017