This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283529 #35 Jan 05 2025 19:51:41 %S A283529 1,1,2,2,3,3,5,5,7,7,9,9,12,12,15,15,18,18,22,22,26,26,30,30,35,35,40, %T A283529 40,45,45,52,52,59,59,66,66,75,75,84,84,93,93,104,104,115,115,126,126, %U A283529 139,139,152,152,165,165,180,180,195,195,210,210,228,228 %N A283529 The number of partitions of n into simple parts. %C A283529 Number of partitions of n where each part is simple, meaning that each part is in A002110. %H A283529 Giovanni Resta, <a href="/A283529/b283529.txt">Table of n, a(n) for n = 0..10000</a> %H A283529 J. Wang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-4/wang.pdf">Reduced phi-partitions of positive integers</a>, Fib. Quart. 31 (4) (1993) 365-369. %F A283529 G.f.: 1/Product_{i>=0} (1-x^A002110(i)). %e A283529 a(6)=5 counts 1+1+1+1+1+1 = 1+1+1+2 = 1+1+2+2 = 2+2+2 =6. %e A283529 a(7)=5 counts 1+1+1+1+1+1+1 = 1+1+1+1+1+2 = 1+1+1+2+2 = 1+2+2+2 = 1+6. %p A283529 isA002110 := proc(n) %p A283529 member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ; %p A283529 end proc: %p A283529 A283529 := proc(n) %p A283529 local a,k,issimp,p ; %p A283529 a := 0 ; %p A283529 for k in combinat[partition](n) do %p A283529 issimp := true ; %p A283529 for p in k do %p A283529 if not isA002110(p) then %p A283529 issimp := false; %p A283529 break; %p A283529 end if; %p A283529 end do: %p A283529 if issimp then %p A283529 a := a+1 ; %p A283529 end if; %p A283529 end do: %p A283529 a ; %p A283529 end proc: %t A283529 (* It suffices to compute 3 primorials to get 100 correct terms *) %t A283529 terms = 100; primorials = FoldList[Times, 1, Prime[Range[3]]]; 1/(Times @@ (1 - x^primorials)) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, May 19 2018 *) %Y A283529 Cf. A002110, A064986, A283528. %K A283529 nonn %O A283529 0,3 %A A283529 _R. J. Mathar_, Mar 10 2017 %E A283529 a(0)=1 prepended by _Alois P. Heinz_, Mar 13 2017