This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283530 #28 Jan 05 2025 19:51:41 %S A283530 0,0,1,1,1,0,1,2,1,1,1,1,1,2,2,3,1,1,1,2,3,3,1,1,2,3,3,3,1,0,1,5,4,4, %T A283530 3,2,1,5,4,4,1,1,1,6,6,7,1,3,2,6,5,8,1,3,4,8,6,10,1,1,1,11,9,12,5,2,1, %U A283530 12,8,5,1,5,1,14,13,14,5,3,1,13,9,16,1,1 %N A283530 The number of reduced phi-partitions of n. %C A283530 The reduced phi-partitions of n are partitions n= a_1 +a_2 +a_3 +... +a_k into at least 2 parts such that each part is simple (i.e. each part in A002110, as required in A283529) and such that in addition phi(n) = sum_i phi(a_i), as required in A283528. phi(.) = A000010(.) is Euler's totient. %C A283530 Numbers n where a(n)=1 are called semisimple. 3, 4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 23, 24,... are semisimple (see A283320). In this list of semisimple numbers there are no odd numbers besides 9 and the odd primes. %H A283530 Alois P. Heinz, <a href="/A283530/b283530.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Giovanni Resta) %H A283530 J. Wang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-4/wang.pdf">Reduced phi-partitions of positive integers</a>, Fib. Quart. 31 (4) (1993) 365-369. %H A283530 J. Wang, X. Wang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/44-2/quartwang02_2006.pdf">On the set of reduced phi-partitions of a positive integer</a>, Fib. Quart. 44 (2) (2006) 98-102. %F A283530 a(A002110(k)) = 0. [Wang] %e A283530 a(15)=2 counts 1+2+2+2+2+2+2= 1+1+1+2+2+2+6. %e A283530 a(16)=3 counts 2+2+2+2+2+2+2+2 = 1+1+2+2+2+2+6 = 1+1+1+1+6+6. %p A283530 isA002110 := proc(n) %p A283530 member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ; %p A283530 end proc: %p A283530 A283530 := proc(n) %p A283530 local a,k,issimp,p ; %p A283530 a := 0 ; %p A283530 for k in combinat[partition](n) do %p A283530 issimp := true ; %p A283530 for p in k do %p A283530 if not isA002110(p) then %p A283530 issimp := false; %p A283530 break; %p A283530 end if; %p A283530 end do: %p A283530 if issimp and nops(k) > 1 then %p A283530 phip := add(numtheory[phi](p),p=k) ; %p A283530 if phip = numtheory[phi](n) then %p A283530 a := a+1 ; %p A283530 end if; %p A283530 end if; %p A283530 end do: %p A283530 a ; %p A283530 end proc: %t A283530 v={1,2,6,30,210}; e=10^9 v + EulerPhi@v; a[n_] := Length@ IntegerPartitions[ 10^9 n + EulerPhi[n], {2, Infinity}, e]; Array[a, 100] (* suitable for n <= 1000, _Giovanni Resta_, Mar 10 2017 *) %Y A283530 Cf. A283528, A283529, A283320. %K A283530 nonn %O A283530 1,8 %A A283530 _R. J. Mathar_, Mar 10 2017