This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283533 #26 Jun 18 2019 14:50:45 %S A283533 1,33,2188,262177,48828126,13060696236,4747561509944,2251799813947425, %T A283533 1350851717672994277,1000000000000048828158,895430243255237372246532, %U A283533 953962166440690142662256812,1192533292512492016559195008118 %N A283533 a(n) = Sum_{d|n} d^(2*d + 1). %C A283533 Inverse Mobius transform of A085526. - _R. J. Mathar_, Mar 11 2017 %H A283533 Seiichi Manyama, <a href="/A283533/b283533.txt">Table of n, a(n) for n = 1..214</a> %F A283533 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - _Seiichi Manyama_, Jun 18 2019 %e A283533 a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236. %t A283533 f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* _Robert G. Wilson v_, Mar 10 2017 *) %o A283533 (PARI) a(n) = sumdiv(n, d, d^(2*d+1)); \\ _Michel Marcus_, Mar 11 2017 %o A283533 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ _Seiichi Manyama_, Jun 18 2019 %Y A283533 Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), this sequence (k=2), A283535 (k=3). %Y A283533 Cf. A308696. %K A283533 nonn %O A283533 1,2 %A A283533 _Seiichi Manyama_, Mar 10 2017