This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283535 #22 Jun 18 2019 14:51:00 %S A283535 1,129,59050,67108993,152587890626,609359740069674, %T A283535 3909821048582988050,37778931862957228818561, %U A283535 523347633027360537213570571,10000000000000000000152587890754,255476698618765889551019445759400442,8505622499821102144576132293474637113130 %N A283535 a(n) = Sum_{d|n} d^(3*d + 1). %H A283535 Seiichi Manyama, <a href="/A283535/b283535.txt">Table of n, a(n) for n = 1..152</a> %F A283535 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k))) = Sum_{k>=1} a(k)*x^k/k. - _Seiichi Manyama_, Jun 18 2019 %e A283535 a(6) = 1^(3+1) + 2^(6+1) + 3^(9+1) + 6^(18+1) = 609359740069674. %t A283535 f[n_] := Block[{d = Divisors[n]}, Total[d^(3 d + 1)]]; Array[f, 12] (* _Robert G. Wilson v_, Mar 10 2017 *) %o A283535 (PARI) a(n) = sumdiv(n, d, d^(3*d+1)); \\ _Michel Marcus_, Mar 11 2017 %o A283535 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k))))) \\ _Seiichi Manyama_, Jun 18 2019 %Y A283535 Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), A283533 (k=2), this sequence (k=3). %Y A283535 Cf. A308697. %K A283535 nonn %O A283535 1,2 %A A283535 _Seiichi Manyama_, Mar 10 2017