A283543 T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors.
2, 4, 4, 7, 11, 8, 13, 27, 33, 16, 24, 76, 127, 98, 32, 44, 201, 578, 573, 291, 64, 81, 537, 2369, 4089, 2615, 865, 128, 149, 1444, 10069, 25532, 29558, 11903, 2570, 256, 274, 3859, 42664, 167920, 282773, 212441, 54211, 7637, 512, 504, 10339, 179733, 1094959
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..0..0. .0..1..0..0. .1..0..0..0. .0..0..1..0. .0..1..0..0 ..0..0..0..1. .0..0..1..0. .1..0..0..1. .1..0..0..1. .0..1..0..0 ..0..0..0..1. .1..0..0..0. .1..0..0..0. .1..0..0..1. .1..0..0..1 ..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..313
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) -7*a(n-3) +10*a(n-4) +4*a(n-5) -8*a(n-6)
k=4: [order 8]
k=5: [order 21]
k=6: [order 27]
k=7: [order 59]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3)
n=2: a(n) = a(n-1) +3*a(n-2) +4*a(n-3)
n=3: a(n) = 2*a(n-1) +7*a(n-2) +11*a(n-3) -6*a(n-4) +11*a(n-5) -2*a(n-6)
n=4: [order 8]
n=5: [order 21]
n=6: [order 32]
n=7: [order 69]
Comments