A283552 Numbers k == 33 (mod 60) such that 2k+1, 2k+5, 3k+2 and 3k+8 are all primes.
33, 153, 453, 1953, 4773, 19353, 23253, 36273, 37413, 38793, 40773, 50133, 51693, 70413, 70833, 83433, 88893, 108393, 115233, 117873, 131193, 136113, 157773, 161733, 164793, 170973, 184533, 221793, 234813, 238293, 258453, 271893, 272313, 287313, 304953, 307713, 325533, 327753, 330393
Offset: 1
Keywords
Examples
a(2) = 153, 2*153 + 1 = 307, 2*153 + 5 = 311, 3*153 + 2 = 461 and 3*153 + 8 = 467 are all primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
Programs
-
Mathematica
Select[33 + Range[0, 6*10^5]*60, PrimeQ[2 # + 1] && PrimeQ[2 # + 5] && PrimeQ[3 # + 2] && PrimeQ[3 # + 8] &]
Comments