A283554 Numbers k such that k![4] - 2 is prime, where k![4] = A007662(k) = quadruple factorial.
4, 5, 7, 9, 11, 15, 21, 25, 29, 49, 79, 87, 95, 125, 133, 153, 157, 185, 201, 217, 223, 289, 323, 469, 533, 567, 821, 1001, 1999, 2523, 2533, 2827, 2843, 4821, 8153, 8947, 12739, 19353, 22929, 30629, 31809, 37785, 74913, 97411
Offset: 1
Keywords
Links
- C. Caldwell and H. Dubner (Eds): The top ten prime numbers: from the unpublished collections of R. Ondrejka (May 2001), Table 21 F, p. 75
- Ken Davis, Status of Search for Multifactorial Primes.
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[2, 50000], PrimeQ[MultiFactorial[#, 4] - 2] &]
Extensions
a(43)-a(44) from Robert Price, Jul 24 2017
Comments