A283567 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
1, 26, 169, 1108, 6453, 36038, 194173, 1021432, 5275885, 26869458, 135310457, 675163708, 3343196861, 16447661790, 80470971869, 391822686752, 1899839181365, 9177752354378, 44190339947417, 212148874972196, 1015791721800101
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0. .1..1..1. .0..1..0. .0..1..1. .0..1..0. .1..1..1. .0..1..0 ..1..1..0. .1..0..0. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .1..0..0 ..1..0..1. .0..0..0. .0..0..1. .1..0..1. .0..0..0. .1..0..1. .1..0..1 ..1..0..1. .1..1..0. .0..1..1. .0..1..1. .0..1..1. .0..0..0. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283572.
Formula
Empirical: a(n) = 10*a(n-1) -27*a(n-2) -4*a(n-3) +89*a(n-4) -106*a(n-5) -85*a(n-6) +228*a(n-7) -60*a(n-8) -192*a(n-9) +144*a(n-10) +64*a(n-11) -64*a(n-12)
Comments