A283568 Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
2, 72, 674, 6812, 60802, 528436, 4441052, 36589848, 296555892, 2373574616, 18804085974, 147722885964, 1152326125736, 8934988081564, 68923216977218, 529275667161388, 4048382091614590, 30857555674174468, 234469910144650842
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0. .1..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..1 ..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..0..0..1. .0..0..0..0 ..0..1..0..1. .1..1..0..0. .1..1..0..0. .1..1..0..1. .0..0..1..1 ..0..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..0..0. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283572.
Formula
Empirical: a(n) = 12*a(n-1) -16*a(n-2) -148*a(n-3) +122*a(n-4) +8*a(n-5) -1218*a(n-6) +1236*a(n-7) +1851*a(n-8) -3776*a(n-9) +3314*a(n-10) +5408*a(n-11) -7569*a(n-12) -2532*a(n-13) +2620*a(n-14) +320*a(n-15) -256*a(n-16)
Comments