A283569 Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
5, 282, 4313, 67892, 945100, 12699250, 164714523, 2089140956, 26034179747, 320066184088, 3892257109768, 46912556808052, 561231923565665, 6671995763846662, 78889299491699749, 928412437363667396
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0..0. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..0 ..1..0..1..0..0. .0..0..1..0..1. .0..0..1..0..0. .1..0..1..0..0 ..0..0..1..0..0. .0..0..1..0..0. .1..0..1..0..1. .1..0..1..0..0 ..1..1..0..0..0. .0..0..0..0..0. .1..0..0..0..0. .1..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283572.
Formula
Empirical: a(n) = 26*a(n-1) -199*a(n-2) +132*a(n-3) +4265*a(n-4) -17778*a(n-5) -15431*a(n-6) +219544*a(n-7) -281138*a(n-8) -1030440*a(n-9) +2246322*a(n-10) +1755192*a(n-11) -1811285*a(n-12) -3285434*a(n-13) -13913513*a(n-14) +16913132*a(n-15) +1232775*a(n-16) +17203018*a(n-17) -24077179*a(n-18) -4811576*a(n-19) +3633696*a(n-20) +13901264*a(n-21) +3953216*a(n-22) -16310568*a(n-23) -2421451*a(n-24) +6596550*a(n-25) +5162315*a(n-26) -3560308*a(n-27) -4199693*a(n-28) +2503442*a(n-29) +1473667*a(n-30) -1059728*a(n-31) -255854*a(n-32) +261176*a(n-33) +18126*a(n-34) -39936*a(n-35) +1121*a(n-36) +3850*a(n-37) -347*a(n-38) -220*a(n-39) +29*a(n-40) +6*a(n-41) -a(n-42)
Comments