cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A283567 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

1, 26, 169, 1108, 6453, 36038, 194173, 1021432, 5275885, 26869458, 135310457, 675163708, 3343196861, 16447661790, 80470971869, 391822686752, 1899839181365, 9177752354378, 44190339947417, 212148874972196, 1015791721800101
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Column 3 of A283572.

Examples

			Some solutions for n=4
..1..0..0. .1..1..1. .0..1..0. .0..1..1. .0..1..0. .1..1..1. .0..1..0
..1..1..0. .1..0..0. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .1..0..0
..1..0..1. .0..0..0. .0..0..1. .1..0..1. .0..0..0. .1..0..1. .1..0..1
..1..0..1. .1..1..0. .0..1..1. .0..1..1. .0..1..1. .0..0..0. .0..1..0
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 10*a(n-1) -27*a(n-2) -4*a(n-3) +89*a(n-4) -106*a(n-5) -85*a(n-6) +228*a(n-7) -60*a(n-8) -192*a(n-9) +144*a(n-10) +64*a(n-11) -64*a(n-12)

A283568 Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

2, 72, 674, 6812, 60802, 528436, 4441052, 36589848, 296555892, 2373574616, 18804085974, 147722885964, 1152326125736, 8934988081564, 68923216977218, 529275667161388, 4048382091614590, 30857555674174468, 234469910144650842
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Column 4 of A283572.

Examples

			Some solutions for n=4
..0..1..0..0. .1..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..0..0..1. .0..0..0..0
..0..1..0..1. .1..1..0..0. .1..1..0..0. .1..1..0..1. .0..0..1..1
..0..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..0..0. .1..0..1..0
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 12*a(n-1) -16*a(n-2) -148*a(n-3) +122*a(n-4) +8*a(n-5) -1218*a(n-6) +1236*a(n-7) +1851*a(n-8) -3776*a(n-9) +3314*a(n-10) +5408*a(n-11) -7569*a(n-12) -2532*a(n-13) +2620*a(n-14) +320*a(n-15) -256*a(n-16)

A283569 Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

5, 282, 4313, 67892, 945100, 12699250, 164714523, 2089140956, 26034179747, 320066184088, 3892257109768, 46912556808052, 561231923565665, 6671995763846662, 78889299491699749, 928412437363667396
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Column 5 of A283572.

Examples

			Some solutions for n=4
..1..0..1..0..0. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..0
..1..0..1..0..0. .0..0..1..0..1. .0..0..1..0..0. .1..0..1..0..0
..0..0..1..0..0. .0..0..1..0..0. .1..0..1..0..1. .1..0..1..0..0
..1..1..0..0..0. .0..0..0..0..0. .1..0..0..0..0. .1..1..0..0..1
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 26*a(n-1) -199*a(n-2) +132*a(n-3) +4265*a(n-4) -17778*a(n-5) -15431*a(n-6) +219544*a(n-7) -281138*a(n-8) -1030440*a(n-9) +2246322*a(n-10) +1755192*a(n-11) -1811285*a(n-12) -3285434*a(n-13) -13913513*a(n-14) +16913132*a(n-15) +1232775*a(n-16) +17203018*a(n-17) -24077179*a(n-18) -4811576*a(n-19) +3633696*a(n-20) +13901264*a(n-21) +3953216*a(n-22) -16310568*a(n-23) -2421451*a(n-24) +6596550*a(n-25) +5162315*a(n-26) -3560308*a(n-27) -4199693*a(n-28) +2503442*a(n-29) +1473667*a(n-30) -1059728*a(n-31) -255854*a(n-32) +261176*a(n-33) +18126*a(n-34) -39936*a(n-35) +1121*a(n-36) +3850*a(n-37) -347*a(n-38) -220*a(n-39) +29*a(n-40) +6*a(n-41) -a(n-42)

A283570 Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

12, 908, 21186, 509952, 10919674, 226897932, 4558585174, 89724600000, 1736716820366, 33188681249924, 627668838247742, 11769603893466432, 219120313902873796, 4054721455598417092, 74638990577755174088
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Column 6 of A283572.

Examples

			Some solutions for n=3
..0..1..0..0..0..0. .0..0..0..1..1..0. .1..0..1..1..1..0. .1..0..0..1..1..0
..0..1..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .1..0..0..0..0..0
..0..1..0..0..0..0. .1..1..1..0..0..1. .1..1..0..0..1..1. .1..0..1..1..1..0
		

Crossrefs

Cf. A283572.

Formula

Empirical recurrence of order 54 (see link above)

A283571 Number of nX7 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

26, 2832, 104464, 3890056, 129527524, 4173039716, 129997769458, 3965206666608, 118919078661476, 3520469545329364, 103128721861954074, 2995091644500263428, 86357662212925835570, 2474720063522591410712, 70543862532039328231208
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Column 7 of A283572.

Examples

			Some solutions for n=3
..0..0..1..0..1..1..1. .0..1..0..0..0..0..1. .0..0..0..0..0..0..0
..0..0..0..0..0..0..0. .0..0..0..1..1..0..1. .1..0..0..0..0..1..0
..1..1..0..1..1..0..0. .1..0..1..0..1..0..0. .0..1..1..0..0..0..0
		

Crossrefs

Cf. A283572.

A283573 Number of 2Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 4, 26, 72, 282, 908, 2832, 8856, 26750, 80088, 237190, 695272, 2024064, 5853676, 16835874, 48194664, 137385394, 390201476, 1104636144, 3118021376, 8778028806, 24653647608, 69091665822, 193246772832, 539525988960, 1503796131028
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Row 2 of A283572.

Examples

			Some solutions for n=4
..0..0..1..1. .0..0..0..0. .1..1..0..0. .1..0..1..1. .0..1..1..1
..0..1..0..1. .0..1..1..1. .1..0..0..0. .1..0..0..1. .0..1..0..1
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-2) +2*a(n-3) -17*a(n-4) -24*a(n-5) -16*a(n-6).
Empirical: G.f.: 2*x^2*(2+9*x)/(-1+x+3*x^2+4*x^3)^2 . - R. J. Mathar, Mar 11 2017

A283574 Number of 3Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 16, 169, 674, 4313, 21186, 104464, 513458, 2431143, 11478378, 53471911, 246887096, 1132514276, 5160569268, 23395062541, 105570183858, 474452680669, 2124725208078, 9484785230640, 42219767106150, 187451695326747
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Row 3 of A283572.

Examples

			Some solutions for n=4
..1..1..0..1. .0..1..0..0. .0..1..1..0. .0..0..0..0. .1..0..1..0
..1..0..0..0. .0..1..0..0. .1..0..0..0. .0..1..1..0. .1..0..0..1
..0..0..1..0. .1..1..0..1. .1..0..1..0. .0..1..0..1. .1..0..1..0
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-3) -105*a(n-4) -108*a(n-5) -85*a(n-6) -14*a(n-7) -250*a(n-8) +176*a(n-9) -145*a(n-10) +44*a(n-11) -4*a(n-12)

A283575 Number of 4Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 68, 1108, 6812, 67892, 509952, 3890056, 29428836, 214600036, 1561753984, 11203805186, 79697223948, 563151495500, 3952776211644, 27603742610922, 191869394908352, 1328251534591608, 9162408587486912, 63001467075539154
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Row 4 of A283572.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1
..0..1..1..1. .0..0..1..0. .0..0..0..1. .1..0..0..1. .1..1..0..0
..0..1..0..1. .0..0..0..0. .1..0..0..1. .0..1..0..0. .0..1..0..1
..0..1..0..1. .1..1..0..0. .1..0..1..1. .0..0..1..0. .0..1..0..1
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 4*a(n-1) +34*a(n-2) +48*a(n-3) -561*a(n-4) -2288*a(n-5) -5234*a(n-6) -5692*a(n-7) -8384*a(n-8) +4044*a(n-9) -3814*a(n-10) +27880*a(n-11) -6865*a(n-12) +31280*a(n-13) -24250*a(n-14) +14500*a(n-15) -21025*a(n-16)

A283576 Number of 5Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 256, 6453, 60802, 945100, 10919674, 129527524, 1518039552, 17162725531, 193879598458, 2157351957174, 23818259818860, 261203745411854, 2845597456824844, 30846423421417897, 332823725660697214
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Row 5 of A283572.

Examples

			Some solutions for n=4
..0..1..0..0. .1..1..0..1. .1..0..0..1. .0..0..1..1. .1..1..0..1
..1..0..0..0. .0..1..0..0. .1..0..1..0. .1..0..0..0. .0..1..0..0
..1..0..0..1. .0..1..0..0. .0..0..1..0. .1..0..1..0. .0..0..0..0
..0..0..0..1. .0..0..0..1. .1..0..1..1. .1..0..0..0. .1..0..1..1
..0..1..1..0. .1..1..0..0. .1..0..0..0. .0..1..1..0. .0..0..0..0
		

Crossrefs

Cf. A283572.

Formula

Empirical: a(n) = 8*a(n-1) +68*a(n-2) +60*a(n-3) -3476*a(n-4) -14270*a(n-5) -44938*a(n-6) -22046*a(n-7) -330622*a(n-8) +510556*a(n-9) -2390879*a(n-10) +12030076*a(n-11) -33356941*a(n-12) +109298060*a(n-13) -275521313*a(n-14) +720665120*a(n-15) -1806543117*a(n-16) +3736469200*a(n-17) -6762740424*a(n-18) +9106885902*a(n-19) -8972101747*a(n-20) +5725392444*a(n-21) +1465366745*a(n-22) -4653650006*a(n-23) +5324165465*a(n-24) -6499265632*a(n-25) -1325270370*a(n-26) +4246454996*a(n-27) -6037898483*a(n-28) +4489487644*a(n-29) +550019212*a(n-30) +225055032*a(n-31) +2503394292*a(n-32) -1535246836*a(n-33) -69578999*a(n-34) +500958770*a(n-35) -1021093565*a(n-36) -36310362*a(n-37) +1083010*a(n-38) +1959144*a(n-39) +32639*a(n-40) -1740*a(n-41) -900*a(n-42)

A283577 Number of 6Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 924, 36038, 528436, 12699250, 226897932, 4173039716, 75680334636, 1325245534158, 23188665136084, 399584953679136, 6833558444087984, 116073651385176490, 1958677669677212976, 32888238393714753228
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2017

Keywords

Comments

Row 6 of A283572.

Examples

			Some solutions for n=3
..0..0..0. .1..0..0. .1..1..1. .1..0..1. .1..1..0. .1..0..1. .0..1..1
..0..0..1. .0..1..0. .1..0..1. .1..0..0. .1..0..0. .1..1..1. .1..0..0
..1..1..1. .0..0..0. .1..0..1. .0..0..0. .0..0..1. .1..0..1. .0..0..0
..1..0..1. .0..0..1. .0..0..0. .0..0..0. .1..0..0. .1..0..0. .1..0..0
..1..0..0. .1..1..1. .0..0..0. .0..0..1. .0..0..1. .1..0..0. .1..0..0
..1..0..1. .0..0..1. .0..0..1. .1..1..1. .1..0..1. .0..0..1. .0..0..0
		

Crossrefs

Cf. A283572.

Formula

Empirical recurrence of order 64 (see link above)
Showing 1-10 of 12 results. Next