A283575 Number of 4Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
0, 68, 1108, 6812, 67892, 509952, 3890056, 29428836, 214600036, 1561753984, 11203805186, 79697223948, 563151495500, 3952776211644, 27603742610922, 191869394908352, 1328251534591608, 9162408587486912, 63001467075539154
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1 ..0..1..1..1. .0..0..1..0. .0..0..0..1. .1..0..0..1. .1..1..0..0 ..0..1..0..1. .0..0..0..0. .1..0..0..1. .0..1..0..0. .0..1..0..1 ..0..1..0..1. .1..1..0..0. .1..0..1..1. .0..0..1..0. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283572.
Formula
Empirical: a(n) = 4*a(n-1) +34*a(n-2) +48*a(n-3) -561*a(n-4) -2288*a(n-5) -5234*a(n-6) -5692*a(n-7) -8384*a(n-8) +4044*a(n-9) -3814*a(n-10) +27880*a(n-11) -6865*a(n-12) +31280*a(n-13) -24250*a(n-14) +14500*a(n-15) -21025*a(n-16)
Comments