A283576 Number of 5Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
0, 256, 6453, 60802, 945100, 10919674, 129527524, 1518039552, 17162725531, 193879598458, 2157351957174, 23818259818860, 261203745411854, 2845597456824844, 30846423421417897, 332823725660697214
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0. .1..1..0..1. .1..0..0..1. .0..0..1..1. .1..1..0..1 ..1..0..0..0. .0..1..0..0. .1..0..1..0. .1..0..0..0. .0..1..0..0 ..1..0..0..1. .0..1..0..0. .0..0..1..0. .1..0..1..0. .0..0..0..0 ..0..0..0..1. .0..0..0..1. .1..0..1..1. .1..0..0..0. .1..0..1..1 ..0..1..1..0. .1..1..0..0. .1..0..0..0. .0..1..1..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283572.
Formula
Empirical: a(n) = 8*a(n-1) +68*a(n-2) +60*a(n-3) -3476*a(n-4) -14270*a(n-5) -44938*a(n-6) -22046*a(n-7) -330622*a(n-8) +510556*a(n-9) -2390879*a(n-10) +12030076*a(n-11) -33356941*a(n-12) +109298060*a(n-13) -275521313*a(n-14) +720665120*a(n-15) -1806543117*a(n-16) +3736469200*a(n-17) -6762740424*a(n-18) +9106885902*a(n-19) -8972101747*a(n-20) +5725392444*a(n-21) +1465366745*a(n-22) -4653650006*a(n-23) +5324165465*a(n-24) -6499265632*a(n-25) -1325270370*a(n-26) +4246454996*a(n-27) -6037898483*a(n-28) +4489487644*a(n-29) +550019212*a(n-30) +225055032*a(n-31) +2503394292*a(n-32) -1535246836*a(n-33) -69578999*a(n-34) +500958770*a(n-35) -1021093565*a(n-36) -36310362*a(n-37) +1083010*a(n-38) +1959144*a(n-39) +32639*a(n-40) -1740*a(n-41) -900*a(n-42)
Comments