A283577 Number of 6Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
0, 924, 36038, 528436, 12699250, 226897932, 4173039716, 75680334636, 1325245534158, 23188665136084, 399584953679136, 6833558444087984, 116073651385176490, 1958677669677212976, 32888238393714753228
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0. .1..0..0. .1..1..1. .1..0..1. .1..1..0. .1..0..1. .0..1..1 ..0..0..1. .0..1..0. .1..0..1. .1..0..0. .1..0..0. .1..1..1. .1..0..0 ..1..1..1. .0..0..0. .1..0..1. .0..0..0. .0..0..1. .1..0..1. .0..0..0 ..1..0..1. .0..0..1. .0..0..0. .0..0..0. .1..0..0. .1..0..0. .1..0..0 ..1..0..0. .1..1..1. .0..0..0. .0..0..1. .0..0..1. .1..0..0. .1..0..0 ..1..0..1. .0..0..1. .0..0..1. .1..1..1. .1..0..1. .0..0..1. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 64
Crossrefs
Cf. A283572.
Formula
Empirical recurrence of order 64 (see link above)
Comments