This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283608 #39 Apr 09 2025 15:02:20 %S A283608 5,15,25,35,45,50,51,52,53,54,55,105,115,125,135,145,150,151,152,153, %T A283608 154,155,205,215,225,235,245,250,251,252,253,254,255,305,315,325,335, %U A283608 345,350,351,352,353,354,355,405,415,425,435,445,450,451,452,453,454 %N A283608 Numbers whose largest decimal digit is 5. %C A283608 Numbers n such that A054055(n) = 5. %C A283608 Number of terms less than 10^n is 6^n - 5^n. %C A283608 Subsequence of A011535. - _David A. Corneth_, Mar 25 2017 %C A283608 Prime terms are in A106097. %H A283608 Muniru A Asiru, <a href="/A283608/b283608.txt">Table of n, a(n) for n = 1..5000</a> %t A283608 Select[Range[1000], Max[IntegerDigits[#]] == 5 &] (* _Giovanni Resta_, Mar 19 2017 *) %o A283608 (Magma) [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 5]; %o A283608 (PARI) for(n=1, 500, if(vecmax(digits(n))==5, print1(n,", "))) \\ _Indranil Ghosh_, Mar 19 2017 %o A283608 (PARI) nxt(n) = {my(d = digits(n), i, j=0, t=0); forstep(i=#d,1,-1, if(d[i]!=5, j=i; break)); if(j>0, d[j]++; if(d[j]==5, for(k=j+1,#d,d[k]=0)); if(j<#d && d[j+1]==5, for(k=j+1,#d-1,d[k]=0)); for(k=1,j-1, if(d[k]==5,for(i=j+1, #d, d[i] = 0);break)), d = vector(#d+1); d[1]=1; d[#d]=5);sum(i=1, #d, d[i]*10^(#d-i))} \\ _David A. Corneth_, Mar 25 2017 %o A283608 (Python) %o A283608 from sympy.ntheory.factor_ import digits %o A283608 print([n for n in range(1, 501) if max(digits(n)[1:])==5]) # _Indranil Ghosh_, Mar 19 2017 %o A283608 (GAP) Filtered([1..500],n->Maximum(ListOfDigits(n))=5); # _Muniru A Asiru_, Feb 27 2019 %Y A283608 Cf. A011535, A054055, A106097. %Y A283608 Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), this sequence (k = 5), A283609 (k = 6), A283610 (k = 7), A283611 (k = 8), A011539 (k = 9). %K A283608 nonn,base,easy %O A283608 1,1 %A A283608 _Jaroslav Krizek_, Mar 19 2017