This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283613 #18 Mar 23 2017 14:42:10 %S A283613 1,1,2,6,6,2,2,12,30,38,24,6,2,18,74,174,248,212,100,20,2,24,138,480, %T A283613 1092,1668,1700,1110,420,70,2,30,222,1026,3228,7188,11492,13140,10500, %U A283613 5572,1764,252,2,36,326,1882,7580,22274,48852,80672,100044,91840,60564,27132,7392,924,2,42,450,3118,15324,56040,156664,339720,574716,757148,769356,591444,332640,129096,30888,3432,2,48,594,4804,27888,122136,415576,1118268,2403588,4143116,5719788,6281856,5416488,3586968,1760616,603174,128700,12870 %N A283613 T(n,k) = number of linear arrays of n 1's, n -1's, and k 0's such that no two adjacent elements are equal. %F A283613 G.f.:((x+1)^2*sqrt((1-y)/(1-(2*x+1)^2*y))-x-1)/x. %F A283613 T(n,0) G.f.: (1+y)/(1-y). %F A283613 T(n,1) G.f.: (y^2 + 4*y + 1)/(1-y)^2. %F A283613 T(n,2) G.f.: 2*y*(y^2 + 6*y + 3)/(1-y)^3. %F A283613 T(n,3) G.f.: 2*y*(2*y^3 + 17*y^2 + 15*y + 1)/(1-y)^4. %F A283613 T(n,4) G.f.: 4*y^2*(2*y^3 + 23*y^2 + 32*y + 6)/(1-y)^5. %F A283613 T(n,5) G.f.: 2*y^2*(8*y^4 + 120*y^3 + 243*y^2 + 88*y + 3)/(1-y)^6. %F A283613 T(n,2*n+1) = binomial(2*n,n). %F A283613 T(n,2*n) = (n+2)*binomial(2*n,n). %F A283613 T(n,n) = A110706(n) n > 0. %F A283613 Sum_{2*n+k = m} T(n,k) = A199697(m). %e A283613 The table starts with columns k=0...11 and rows n=0...5: %e A283613 | 0 1 2 3 4 5 6 7 8 9 10 11 %e A283613 ----------------------------------------------------------- %e A283613 0 | 1 1 %e A283613 1 | 2 6 6 2 %e A283613 2 | 2 12 30 38 24 6 %e A283613 3 | 2 18 74 174 248 212 100 20 %e A283613 4 | 2 24 138 480 1092 1668 1700 1110 420 70 %e A283613 5 | 2 30 222 1026 3228 7188 11492 13140 10500 5572 1764 252 %e A283613 For n=2, k=4 the 24 arrays are: %e A283613 [-1,0,-1,0,1,0,1,0] [-1,0,1,0,-1,0,1,0] [-1,0,1,0,1,0,-1,0] [1,0,-1,0,-1,0,1,0] %e A283613 [1,0,-1,0,1,0,-1,0] [1,0,1,0,-1,0,-1,0] [0,-1,1,0,-1,0,1,0] [0,-1,1,0,1,0,-1,0] %e A283613 [0,-1,0,-1,1,0,1,0] [0,-1,0,-1,0,1,0,1] [0,-1,0,1,-1,0,1,0] [0,-1,0,1,0,-1,1,0] %e A283613 [0,-1,0,1,0,-1,0,1] [0,-1,0,1,0,1,-1,0] [0,-1,0,1,0,1,0,-1] [0,1,-1,0,-1,0,1,0] %e A283613 [0,1,-1,0,1,0,-1,0] [0,1,0,-1,1,0,-1,0] [0,1,0,-1,0,-1,1,0] [0,1,0,-1,0,-1,0,1] %e A283613 [0,1,0,-1,0,1,-1,0] [0,1,0,-1,0,1,0,-1] [0,1,0,1,-1,0,-1,0] [0,1,0,1,0,-1,0,-1] %t A283613 nmax=8; Flatten[CoefficientList[Series[CoefficientList[Series[((x + 1)^2*Sqrt[(1 - y)/(1 - (2x + 1)^2*y)] - x - 1)/x, {y, 0, nmax}], y], {x, 0, 2nmax + 1}], x]] (* _Indranil Ghosh_, Mar 22 2017 *) %Y A283613 Cf. A110706, A199697. %K A283613 nonn,tabf %O A283613 0,3 %A A283613 _Stefan Hollos_, Mar 11 2017