This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283614 #17 Apr 03 2017 02:57:53 %S A283614 1,2,6,4,2,10,24,28,12,2,14,56,132,180,132,40,2,18,100,352,804,1196, %T A283614 1120,600,140,2,22,156,728,2324,5196,8160,8840,6300,2660,504,2,26,224, %U A283614 1300,5320,15844,34872,56848,67900,57820,33264,11592,1848,2,30,304,2108,10512,39064,110480,240288,402556,515844,496944,348600 %N A283614 T(n,k) = number of circular arrays of n 1's, n -1's, and k 0's such that no two adjacent elements are equal. %C A283614 The array is circular in the sense that the first and last elements are adjacent. %C A283614 For linear arrays see A283613. %F A283614 G.f.: 2*(x*y+1)/sqrt((1-y)*(1-(2*x+1)^2*y))-1. %F A283614 T(n,0) G.f.: (1+y)/(1-y). %F A283614 T(n,1) G.f.: 2*y*(3-y)/(1-y)^2. %F A283614 T(n,2) G.f.: 4*y*(1+3*y-y^2)/(1-y)^3. %F A283614 T(n,3) G.f.: 4*y^2*(1+y)*(7-2*y)/(1-y)^4. %F A283614 T(n,4) G.f.: 4*y^2*(3+30*y+6*y^2-4*y^3)/(1-y)^5. %F A283614 T(n,5) G.f.: 4*y^3*(33+101*y-8*y^3)/(1-y)^6. %F A283614 T(n,n) = A110707(n). %F A283614 T(n,2*n) = 2*binomial(2*n,n). %F A283614 Sum_{2*n+k = m} T(n,k) = A265118(m), m > 3. %e A283614 The table starts with columns k=0..10 and rows n=0..5: %e A283614 | 0 1 2 3 4 5 6 7 8 9 10 %e A283614 ----------------------------------------------------------------- %e A283614 0 | 1 %e A283614 1 | 2 6 4 %e A283614 2 | 2 10 24 28 12 %e A283614 3 | 2 14 56 132 180 132 40 %e A283614 4 | 2 18 100 352 804 1196 1120 600 140 %e A283614 5 | 2 22 156 728 2324 5196 8160 8840 6300 2660 504 %e A283614 For n=2, k=3, the 28 arrays are: %e A283614 [+0-0+0-] [+0+0-0-] [0-+0+0-] [0-0+0+-] %e A283614 [0+-0+0-] [0+0-+0-] [0+0-0+-] [0+0+-0-] %e A283614 [-0-0+0+] [-0+0-0+] [0-+0-0+] [0-0-+0+] %e A283614 [0-0+-0+] [0-0+0-+] [0+-0-0+] [0+0-0-+] %e A283614 [-+0-0+0] [-+0+0-0] [-0-+0+0] [-0+-0+0] %e A283614 [-0+0-+0] [-0+0+-0] [+-0-0+0] [+-0+0-0] %e A283614 [+0-+0-0] [+0-0-+0] [+0-0+-0] [+0+-0-0] %t A283614 nmax=8; Flatten[CoefficientList[Series[CoefficientList[Series[2*(x*y + 1)/Sqrt[(1 - y)*(1 - (2*x + 1)^2*y)] - 1, {y, 0, nmax }], y], {x, 0, 2nmax + 1 }], x]] (* _Indranil Ghosh_, Apr 02 2017 *) %Y A283614 Cf. A110707, A265118, A283613. %K A283614 nonn,tabf %O A283614 0,2 %A A283614 _Stefan Hollos_, Apr 01 2017