cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283616 a(n) = Product_{k=2..floor(sqrt(2n-1)/2)+1} (2n-1) mod (2k-1).

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 1, 0, 4, 4, 0, 6, 0, 0, 8, 1, 0, 0, 4, 0, 12, 3, 0, 20, 0, 0, 24, 0, 0, 24, 5, 0, 0, 32, 0, 16, 9, 0, 0, 56, 0, 72, 0, 0, 320, 0, 0, 0, 84, 0, 24, 240, 0, 512, 160, 0, 90, 0, 0, 0, 0, 0, 0, 12, 0, 500, 0, 0, 160, 672, 0, 0, 0, 0, 2880, 1792, 0, 0, 72, 0, 0, 378
Offset: 1

Views

Author

Zhandos Mambetaliyev, Mar 11 2017

Keywords

Comments

For n>1, if a(n) > 0 then 2n-1 is prime.
From Robert G. Wilson v, Mar 15 2017: (Start)
Except for n=1, a(n)=0 iff 2n-1 is not prime (A104275).
a(n) is prime for n: 3, 6, 22 & 31. (End)

Crossrefs

Cf. A180491.

Programs

  • Mathematica
    Table[Product[Mod[(2 n - 1), (2 k - 1)], {k, 2, Floor[Sqrt[2 n - 1]/2] + 1}], {n, 80}] (* Michael De Vlieger, Mar 15 2017 *)
  • PARI
    a(n)=my(t=2*n-1); prod(k=2,sqrtint(t\4)+1, t%(2*k-1)) \\ Charles R Greathouse IV, Mar 22 2017