cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283617 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers and 0 <= z <= w such that x^3 + 2*y^3 is a square.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 3, 2, 2, 4, 6, 4, 6, 3, 3, 2, 2, 3, 6, 5, 3, 4, 3, 2, 3, 4, 5, 4, 7, 3, 4, 2, 3, 6, 5, 3, 3, 4, 2, 3, 2, 3, 7, 4, 6, 4, 5, 3, 2, 4, 4, 4, 4, 3, 4, 4, 3, 6, 8, 4, 9, 6, 2, 3, 4, 4, 7, 5, 4, 4, 3, 1, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 12 2017

Keywords

Comments

Conjecture: (i) Let a and b >= a be positive integers with gcd(a,b) squarefree. Then, every n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x^3 + b*y^3 is a square, if and only if (a,b) is among the ordered pairs (1,2), (1,8), (2,16), (4,23), (4,31), (5,9), (8,9), (8,225), (9,47), (25,88), (50,54).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x a nonnegative integer and y,z,w integers such that a*x^3 + b*y^3 is a square, whenever (a,b) is among the ordered pairs (1,8), (2,16), (8,1), (9,8), (88,25), (225,8).
(iii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z integers and w a positive integer such that x^3 + 19*y^3 + 19*z^3 is an integer cube.
(iv) Every n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x^3 + b*y^3 + c*z^3 + d*w^3 is a square, whenever (a,b,c,d) is among the ordered quadruples (1,1,3,4), (1,2,3,5), (1,2,3,7), (1,2,4,5),(1,2,5,7), (1,3,4,5), (1,3,4,7), (1,3,6,8), (1,3,8,13), ((1,4,5,9), (1,7,8,11), (1,8,9,10), (1,8,9,11), (2,3,4,7), (2,4,7,9), (2,4,7,14), (2,7,9,11), (3,4,5,7), (3,8,9,11).
By the linked JNT paper, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + 2*y is a square.

Examples

			a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 0^2 with 0^3 + 2*0^3 = 0^2.
a(7) = 1 since 7 = (-1)^2 + 1^2 + 1^2 + 2^2 with (-1)^3 + 2*1^3 = 1^2.
a(79) = 1 since 79 = 3^2 + 3^2 + 5^2 + 6^2 with 3^3 + 2*3^3 = 9^2.
a(88) = 1 since 88 = 4^2 + 0^2 + 6^2 + 6^2 with 4^3 + 2*0^3 = 8^2.
a(151) = 1 since 151 = (-1)^2 + 1^2 + 7^2 + 10^2 with (-1)^3 + 2*1^3 = 1^2.
a(219) = 1 since 219 = 1^2 + 0^2 + 7^2 + 13^2 with 1^3 + 2*0^3 = 1^2.
a(438) = 1 since 438 = (-1)^2 + 1^2 + 6^2 + 20^2 with (-1)^3 + 2*1^3 = 1^2.
a(471) = 1 since 471 = 3^2 + (-1)^2 + 10^2 + 19^2 with 3^3 + 2*(-1)^3 = 5^2.
a(599) = 1 since 599 = 7^2 + (-3)^2 + 10^2 + 21^2 with 7^3 + 2*(-3)^3 = 17^2.
a(751) = 1 since 751 = 3^2 + 3^2 + 2^2 + 27^2 with 3^3 + 2*3^3 = 9^2.
a(807) = 1 since 807 = 3^2 + (-1)^2 + 11^2 + 26^2 with 3^3 + 2*(-1)^3 = 5^2.
a(19743) = 1 since 19743 = (-25)^2 + 25^2 + 58^2 + 123^2 with (-25)^3 + 2*25^3 = 125^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[(-1)^i*x^3+2(-1)^j*y^3],Do[If[SQ[n-x^2-y^2-z^2],r=r+1],{z,0,Sqrt[(n-x^2-y^2)/2]}]],{x,0,Sqrt[n]},{i,0,Min[x,1]},{y,0,Sqrt[n-x^2]},{j,0,Min[y,1]}];Print[n," ",r],{n,0,80}]