This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283624 #29 May 20 2025 12:52:21 %S A283624 1,0,2,102,22874,17633670,46959933962,451575174961302, %T A283624 16271255119687320314,2253375946574190518740230, %U A283624 1219041140314101911449662059402,2601922592659455476330065914740044182,22040870572750372076278589658097827953983034 %N A283624 Number of {0,1} n X n matrices with no rows or columns in which all entries are the same. %C A283624 Every row and column must contain both a 0 and a 1 . %C A283624 a(n) is the number of relations on n labeled points such that for every point x there exists y,z,t,u such that xRy, zRx, not(xRt), and not(uRx). %F A283624 a(n) = 2*Sum_{k=0..n} ((-1)^(n+k)*binomial(n,k)*(2^k-1)^n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n. %F A283624 a(n) = 2*A048291(n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n. %e A283624 For n=2 the a(2)=2 matrices are %e A283624 0 1 %e A283624 1 0 %e A283624 and %e A283624 1 0 %e A283624 0 1 %p A283624 seq(2*sum((-1)^(n+k)*binomial(n,k)*(2^k-1)^n,k=0..n)+2^(n^2)+2*(2^n-2)^n-4*(2^n-1)^n,n=0..10) %t A283624 Table[If[n==0, 1, 2 Sum[(-1)^(n + k) * Binomial[n, k] * (2^k - 1)^n, {k, 0,n}] + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n], {n, 0, 12}] (* _Indranil Ghosh_, Mar 12 2017 *) %o A283624 (PARI) for(n=0, 12, print1(2*sum(k=0, n, (-1)^(n + k) * binomial(n, k) * (2^k - 1)^n) + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n,", ")) \\ _Indranil Ghosh_, Mar 12 2017 %o A283624 (Python) %o A283624 import math %o A283624 f = math.factorial %o A283624 def C(n, r): return f(n)//f(r)//f(n - r) %o A283624 def A(n): %o A283624 s=0 %o A283624 for k in range(0, n+1): %o A283624 s+=(-1)**(n + k) * C(n, k) * (2**k -1)**n %o A283624 return 2*s + 2**(n**2) + 2*(2**n - 2)**n - 4*(2**n - 1)**n # _Indranil Ghosh_, Mar 12 2017 %Y A283624 Cf. A048291. %Y A283624 Diagonal of A283654. %K A283624 nonn %O A283624 0,3 %A A283624 _Robert FERREOL_, Mar 12 2017 %E A283624 a(11)-a(12) from _Indranil Ghosh_, Mar 12 2017