A283627 The number of (n^2) X (n^2) real {0,1}-matrices the square of which is the all-ones matrix.
1, 12, 1330560
Offset: 1
Examples
Four of the 12 solutions for 4 X 4 are 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 . 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 . 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 . 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 . Solutions for 9 X 9 are, for example, 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 . 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 . 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0
Links
- F. Curtis, J. Drew, Central groupoids, central digraphs, and zero-one matrices A satisfying A^2=J, (2002).
- F. Curtis, J. Drew, C-K Li, D. Pragel, Central groupoids, central digraphs, and zero-one matrices A satisfying A^2=J, J. Combin. Theo. A (105) (2004) 35-50.
- J. Knuth, Notes on Central Groupoids, J. Combin. Theo. 8 (1970) 376-390.
- Donald E. Knuth and Peter B. Bendix, Simple word problems in universal algebras, in John Leech (ed.), Computational Problems in Abstract Algebra, Pergamon, 1970, pp. 263-297.
- H. Ryser, A generalization of the matrix equation A^2=J, Lin. Algebra Applic. 3 (4) (1970) 451-460.
- Y.-K. Wu, R.-Z. Jia, Q. Li, g-circulant solutions to the (0,1) matrix equation A^m=J_n, Lin. Alg. Applic. 345 (1-3) (2002) 195-224.
Extensions
Edited by N. J. A. Sloane, Mar 12 2017
Comments