cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283668 Numbers n such that 36n - 7, 36n - 6, 36n - 5, 36n - 3, 36n - 2, 36n - 1, 36n + 1, 36n + 2, 36n + 3, 36n + 5, 36n + 6 and 36n + 7 are all squarefree.

Original entry on oeis.org

1, 3, 6, 11, 22, 25, 31, 35, 36, 39, 49, 51, 58, 65, 67, 69, 81, 85, 86, 92, 97, 99, 100, 110, 115, 119, 125, 126, 133, 135, 142, 144, 149, 150, 153, 161, 164, 165, 167, 169, 172, 174, 175, 176, 186, 194, 199, 201, 206, 208, 210, 214, 217, 224, 231, 235, 236, 239, 240, 242, 244, 247, 251
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 13 2017

Keywords

Examples

			1 is in this sequence because 36*1 - 7 = 29, 36*1 - 6 = 30, 36*1 - 5 = 31, 36*1 - 3 = 33, 36*1 - 2 = 34, 36*1 - 1 = 35, 36*1 + 1 = 37, 36*1 + 2 = 38, 36*1 + 3 = 39, 36*1 + 5 = 41, 36*1 + 6 = 42 and 36*1 + 7 = 43 are all squarefree.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsSquarefree(36*n-7) and IsSquarefree(36*n-6) and IsSquarefree(36*n-5) and IsSquarefree(36*n-3) and IsSquarefree(36*n-2) and IsSquarefree(36*n-1) and IsSquarefree(36*n+1) and IsSquarefree(36*n+2) and IsSquarefree(36*n+3) and IsSquarefree(36*n+5) and IsSquarefree(36*n+6) and IsSquarefree(36*n+7) ];
    
  • Mathematica
    Select[Range@ 256, Function[n, Times @@ Boole@ Map[SquareFreeQ, 36 n + Flatten@ {-#, #} &@ Drop[Range@ 7, {4}]] == 1]] (* Michael De Vlieger, Mar 13 2017 *)
  • PARI
    isok(n) = forstep(k=36*n - 7, 36*n + 7, [1,1,2,1,1,2,1,1,2,1,1], if(!issquarefree(k), return (0))); 1;
    for(n=1, 251, if(isok(n), print1(n,", "))) \\ Indranil Ghosh, Mar 13 2017

Formula

a(n) = A283628(9n) = A283628(9n-1) + 1 = A283628(9n+1) - 1.
a(n) ~ k*n where k = Product_{ p prime > 3} p^2/(p^2 - 12) = 3.7192316.... - Michael R Peake, Mar 16 2017