A283668 Numbers n such that 36n - 7, 36n - 6, 36n - 5, 36n - 3, 36n - 2, 36n - 1, 36n + 1, 36n + 2, 36n + 3, 36n + 5, 36n + 6 and 36n + 7 are all squarefree.
1, 3, 6, 11, 22, 25, 31, 35, 36, 39, 49, 51, 58, 65, 67, 69, 81, 85, 86, 92, 97, 99, 100, 110, 115, 119, 125, 126, 133, 135, 142, 144, 149, 150, 153, 161, 164, 165, 167, 169, 172, 174, 175, 176, 186, 194, 199, 201, 206, 208, 210, 214, 217, 224, 231, 235, 236, 239, 240, 242, 244, 247, 251
Offset: 1
Keywords
Examples
1 is in this sequence because 36*1 - 7 = 29, 36*1 - 6 = 30, 36*1 - 5 = 31, 36*1 - 3 = 33, 36*1 - 2 = 34, 36*1 - 1 = 35, 36*1 + 1 = 37, 36*1 + 2 = 38, 36*1 + 3 = 39, 36*1 + 5 = 41, 36*1 + 6 = 42 and 36*1 + 7 = 43 are all squarefree.
Programs
-
Magma
[n: n in [1..300] | IsSquarefree(36*n-7) and IsSquarefree(36*n-6) and IsSquarefree(36*n-5) and IsSquarefree(36*n-3) and IsSquarefree(36*n-2) and IsSquarefree(36*n-1) and IsSquarefree(36*n+1) and IsSquarefree(36*n+2) and IsSquarefree(36*n+3) and IsSquarefree(36*n+5) and IsSquarefree(36*n+6) and IsSquarefree(36*n+7) ];
-
Mathematica
Select[Range@ 256, Function[n, Times @@ Boole@ Map[SquareFreeQ, 36 n + Flatten@ {-#, #} &@ Drop[Range@ 7, {4}]] == 1]] (* Michael De Vlieger, Mar 13 2017 *)
-
PARI
isok(n) = forstep(k=36*n - 7, 36*n + 7, [1,1,2,1,1,2,1,1,2,1,1], if(!issquarefree(k), return (0))); 1; for(n=1, 251, if(isok(n), print1(n,", "))) \\ Indranil Ghosh, Mar 13 2017
Formula
a(n) ~ k*n where k = Product_{ p prime > 3} p^2/(p^2 - 12) = 3.7192316.... - Michael R Peake, Mar 16 2017