This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283674 #30 Mar 17 2017 10:09:09 %S A283674 1,1,1,1,1,2,1,1,5,3,1,1,17,32,5,1,1,65,746,298,7,1,1,257,19748,66418, %T A283674 3531,11,1,1,1025,531698,16799044,9843707,51609,15,1,1,4097,14349932, %U A283674 4295531890,30535636881,2187941520,894834,22,1,1,16385,387424586,1099526502508,95371863221411,101591759812967,680615139257,17980052,30 %N A283674 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-x^j)^(j^(k*j)) in powers of x. %H A283674 Alois P. Heinz, <a href="/A283674/b283674.txt">Antidiagonals n = 0..52</a> %F A283674 G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j^(k*j)). %e A283674 Square array begins: %e A283674 1, 1, 1, 1, ... %e A283674 1, 1, 1, 1, ... %e A283674 2, 5, 17, 65, ... %e A283674 3, 32, 746, 19748, ... %e A283674 5, 298, 66418, 16799044, ... %p A283674 with(numtheory): %p A283674 A:= proc(n, k) option remember; `if`(n=0, 1, add(add( %p A283674 d*d^(k*d), d=divisors(j))*A(n-j, k), j=1..n)/n) %p A283674 end: %p A283674 seq(seq(A(n, d-n), n=0..d), d=0..10); # _Alois P. Heinz_, Mar 15 2017 %t A283674 A[n_, k_] := If[n==0, 1, Sum[Sum[d*d^(k*d), {d, Divisors[j]}] *A[n - j, k], {j, n}] / n]; Flatten[Table[A[d - n, n],{d, 0, 10},{n, d, 0, -1}]] (* _Indranil Ghosh_, Mar 17 2017 *) %o A283674 (PARI) A(n, k) = if(n==0, 1, sum(j=1, n, sumdiv(j, d, d*d^(k*d)) * A(n - j, k))/n); %o A283674 {for(d=0, 10, for(n=0, d, print1(A(n, d - n),", ");); print(););} \\ _Indranil Ghosh_, Mar 17 2017 %Y A283674 Columns k=0-4 give A000041, A023880, A283579, A283580, A283510. %Y A283674 Rows give: 0-1: A000012, 2: A052539, 3: A283716. %Y A283674 Main diagonal gives A283719. %Y A283674 Cf. A283675. %K A283674 nonn,tabl %O A283674 0,6 %A A283674 _Seiichi Manyama_, Mar 14 2017