This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283698 #22 Jan 10 2020 05:25:00 %S A283698 1,3,45,2055,39033,48585,101535,104553,112383,117723,129315,152553, %T A283698 170793,178095,234483,246435,258093,272403,304845,306885,365343, %U A283698 372663,375813,405393,405975,436425,456903,494193,538965,551475,559713,569805,570033,767895,792903 %N A283698 Numbers k such that {k^2 + 2, k^2 + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs. %C A283698 Except a(1), all terms are multiples of 3. %C A283698 a(n) == {3 or 15} (mod 30) for n>2. %H A283698 Amiram Eldar, <a href="/A283698/b283698.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3665 from K. D. Bajpai) %e A283698 a(2) = 3, {3^2 + 2 = 11, 3^2 + 4 = 13 } and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs. %e A283698 a(3) = 45, {45^2 + 2 = 2027, 45^2 + 4 = 2029 } and {45^3 + 2 = 91127, 45^3 + 4 = 91129} are twin prime pairs. %t A283698 Select[Range[1000000], PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &] %o A283698 (PARI) for(n=1, 100000, if(isprime(n^2+2) && isprime(n^2+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", "))) %Y A283698 Intersection of A086381 and A178337. %Y A283698 Cf. A000040, A144953, A173255, A178336. %K A283698 nonn %O A283698 1,2 %A A283698 _K. D. Bajpai_, Mar 14 2017