cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283715 a(n) is the number of Carmichael numbers whose largest prime factor is prime(n).

This page as a plain text file.
%I A283715 #20 Sep 29 2024 21:10:04
%S A283715 0,0,0,0,0,0,2,1,0,1,2,2,2,0,0,0,0,6,3,1,9,2,0,3,9,7,3,1,16,20,42,19,
%T A283715 12,15,3,60,54,57,2,8,2,277,20,170,75,259,775,57,11,110
%N A283715 a(n) is the number of Carmichael numbers whose largest prime factor is prime(n).
%C A283715 Since Carmichael numbers are squarefree, there is only a finite number of them whose largest prime factor is any given prime.
%H A283715 Giovanni Resta, <a href="/A283715/a283715.txt">Carmichael numbers with largest prime factor <= 179, sorted by their largest prime factor</a>
%e A283715 a(28) = 1 because prime(28) = 107 and there is only one Carmichael number whose largest prime factor is 107, namely 413631505 = 5 * 7 * 17 * 73 * 89 * 107.
%t A283715 a[n_] := a[n] = If[n < 6, 0, Block[{t, p = Prime@ n}, Length@ Select[ Subsets[ Prime@ Range[2, n-1], {2, n-2}], (t = Times @@ #; Mod[t-1, p-1] == 0 && And @@ IntegerQ /@ ((p t - 1)/ (#-1))) &]]]; Array[a, 22]
%o A283715 (Python)
%o A283715 from math import prod
%o A283715 from itertools import combinations
%o A283715 from sympy import prime, primerange
%o A283715 def A283715(n):
%o A283715     plist, c = list(primerange(3,p:=prime(n))), 0
%o A283715     for l in range(2,len(plist)+1):
%o A283715         for q in combinations(plist,l):
%o A283715             k = prod(q)*p-1
%o A283715             if not (k%(p-1) or any(k%(r-1) for r in q)):
%o A283715                 c+=1
%o A283715     return c # _Chai Wah Wu_, Sep 25 2024
%Y A283715 Cf. A002997, A081702, A280617.
%K A283715 nonn,more
%O A283715 1,7
%A A283715 _Giovanni Resta_, Mar 15 2017
%E A283715 a(42)-a(50) from _Ondrej Kutal_, Sep 29 2024