cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283734 Rank array, R, of the golden ratio, read by antidiagonals downwards.

This page as a plain text file.
%I A283734 #8 Mar 19 2017 01:13:40
%S A283734 1,2,3,4,5,7,6,8,10,12,9,11,14,16,19,13,15,18,21,24,28,17,20,23,26,30,
%T A283734 34,38,22,25,29,32,36,41,45,50,27,31,35,39,43,48,53,58,63,33,37,42,46,
%U A283734 51,56,61,67,72,78,40,44,49,54,59,65,70,76,82,88,95,47
%N A283734 Rank array, R, of the golden ratio, read by antidiagonals downwards.
%C A283734 Every row intersperses all other rows, and every column intersperses all other columns.  The array is the dispersion of the complement of column 1; column 1 is given by r(n) = r(n-1) + 1 + L(n), where L = lower Wythoff sequence (A000201).
%H A283734 Clark Kimberling, <a href="/A283734/b283734.txt">Antidiagonals n = 1..60, flattened</a>
%H A283734 Clark Kimberling and John E. Brown, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004.
%F A283734 R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.
%e A283734 The corner of R begins:
%e A283734 1    2    4    6    9    13    17    22
%e A283734 3    5    8    11   15   20    25    31
%e A283734 7    10   14   18   23   29    35    42
%e A283734 12   16   21   26   32   39    46    54
%e A283734 19   24   30   36   43   51    59    68
%e A283734 28   34   41   48   56   65    74    84
%e A283734 38   45   53   61   70   80    90    101
%e A283734 50   58   67   76   86   97    108   120
%e A283734 Let t = golden ratio = (1 + sqrt(5))/2; then R(i,j) = rank of (j,i) when all nonnegative integer pairs (a,b) are ranked by the relation << defined as follows: (a,b) << (c,d) if a + b*t < c + d*t, and also (a,b) << (c,d) if a + b*t = c + d*t and b < d.  Thus R(2,1) = 10 is the rank of (1,2) in the list (0,0) << (1,0) << (0,1) << (2,0) << (1,1) << (3,0) << (0,2) << (2,1) << (4,0) << (1,2).
%t A283734 r = 40; r1 = 12;(*r=# rows of T,r1=# rows to show*);
%t A283734 c = 40; c1 = 12;(*c=# cols of T,c1=# cols to show*);
%t A283734 s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*GoldenRatio];
%t A283734 u = Table[s[n], {n, 0, 400}] (* A283733 *)
%t A283734 v = Complement[Range[Max[u]], u];
%t A283734 f[n_] := v[[n]]; Table[f[n], {n, 1, 30}]
%t A283734 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,
%t A283734 Length[Union[list]]]; rows = {NestList[f, 1, c]};
%t A283734 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
%t A283734 w[i_, j_] := rows[[i, j]];
%t A283734 TableForm[Table[w[i, j], {i, 1, r1}, {j, 1, c1}]]   (* A283734, array *)
%t A283734 Flatten[Table[w[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A283734, sequence *)
%t A283734 TableForm[Table[w[i, 1] + w[1, j] + (i - 1)*(j - 1) - 1, {i, 1, r1}, {j, 1, c1}]] (* A283734, array, by formula *)
%Y A283734 Cf. A001622, A255977 (row 1), A283733 (column 1), A000201, A087465.
%K A283734 nonn,tabl,easy
%O A283734 1,2
%A A283734 _Clark Kimberling_, Mar 16 2017