cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283754 The smallest number k such that k*2^n mod 3^n = 1.

Original entry on oeis.org

2, 7, 17, 76, 38, 262, 1589, 4075, 11879, 35464, 17732, 363160, 181580, 90790, 9611333, 11980120, 92083502, 175181914, 862431935, 2174608168, 1087304084, 543652042, 271826021, 235493860078, 117746930039, 1329806379184, 664903189592, 332451594796, 166225797398, 68713490263582, 446139009321089
Offset: 1

Views

Author

Joe Slater, Mar 23 2017

Keywords

Comments

a(n) is the coefficient "a" in the Diophantine equation with two coefficients a and b, a * 2^n - b * 3^n = 1.

Examples

			2 * 2^1 mod 3^1 = 1, 7 * 2^2 mod 3^2 =1, 17 * 2^3 mod 3^3 = 1...
		

Crossrefs

Cf. A055620.

Programs

  • Maple
    seq(2^(-n) mod 3^n, n=1..100); # Robert Israel, Mar 28 2017
  • Mathematica
    Table[ PowerMod[ (3^n +1)/2, n, 3^n], {n, 30}] (* Robert G. Wilson v, Mar 28 2017 *)
  • PARI
    a(n)= my(z=3^n); lift( Mod((z + 1)/2, z)^n); \\ Joerg Arndt, Mar 24 2017

Formula

a(n) = ((3^n + 1)/2)^n mod 3^n (proved).
Conjecture: 2*a(n+1)-a(n) = 3^n * A055620(n). - Robert Israel, Mar 28 2017

Extensions

Corrected and more terms from Joerg Arndt, Mar 24 2017